350 rub
Journal №9 for 2013 г.
Article in number:
Disturbance in dynamics of cerebrospinal fluid serotonin during ontogenesis in autistic patients
Authors:
A.S. Gorina - Dr.Sc. (Biol.), Sick Children Hospital, Research Institute, Toronto, Canada L.S. Kolesnichenko - Dr.Sc. (Med.), Professor, Irkutsk State Medical University, Irkutsk, Russia M.G. Makletsova - Ph.D. (Biol.), Senior Research Scientist , Research Center of Neurology RAMS, Moscow, Russia T.T. Berezov - Academician RAMS, Dr.Sc. (Med.), Professor, Russian University of Peoples' Friendship, Moscow, Russia
Abstract:
Autism is heterogeneous pervasive developmental disorder, which prevalence is currently increasing. Serotonin has functions of neurotransmitter, neurotrophic factor and a key regulator of central nervous system development. Misbalance of serotonin in the child organism during certain period of ontogenesis results in disturbances in development and maturation of central nervous system. The goal of the present study is investigation of age dynamics of serotonin and its final metabolite, 5-hydroxyindolilacetic acid (5-HIAA) in cerebrospinal fluid of patients with Kanner syndrome (autism) in stable psycho-emotional condition. A group of 18 patients was observed during age period of 1-25 years, control group consisted of 25 persons. In normal development, serotonin and 5-HIAA levels were elevated during the first year of life and then quickly decreased and stabilized at later ages. In autistic patients, however, a decreased level of serotonin and 5-HIAA was observed (as compared to age-matched control) by ages of 1-5 years. Moreover, serotonin level at the age of 1-2 years was decreased as compared to the adult (25 years) control level. Later, as a result of gradual elevation, the levels of both serotonin and 5-HIAA exceeded the control values (by 20-25 years for serotonin and from 5 years for 5-HIAA). The obtained results indicate that the dynamics of serotonin in autistic patients is radically disturbed and represents virtually inversion of the normal dynamics. This can result in pathological development of nervous system and development of autistic symptoms.
Pages: 29-35
References

  1. Robel L. Evolution of the concept of autism // Rev. Prat. 2010. V. 60. № 3. P. 376-378.
  2. Mash E.J., Wolfe D.A. Abnormal Child Psychology. 2012 4th ed. Wadsworth Cengage Learning. P. 300-332.
  3. Carlson N.R. Physiology of behavior. 2010. Allyn & Bacon. P. 114-120.
  4. Popova N.K. From gene to aggressive behavior: the role of brain serotonin / N.K. Popova // Neuroscience and behavioral physiology. 2008. V. 38. № 5. P. 471-475.
  5. Whitaker-Azmitia P.M. Serotonin and brain development: role in human developmental diseases // Brain Res. Bull. 2001. V. 56. № 5. P. 479-485.
  6. Sodhi M.S., Sanders-Bush E. Serotonin and brain development // Int. Rev. Neurobiol. 2004. V. 59. P. 111-174.
  7. Polleux F., Lauder J.M. Toward a developmental neurobiology of Autism // Ment. Retard. Dev. Disabil. Res. Rev. 2004. V. 10. № 4. P. 303-317.
  8. Chugani D.C. Role of altered brain serotonin mechanisms in autism // Mol. Psychiatry. 2002. V. 7. Suppl. 2. P. S16-17.
  9. Skvorczov I.A, Ermolenko N.A. Razvitie nervnoj sistemy' u detej v norme i patologii. M.: MEDpress-inform. 2003. 368 c.
  10. Akshoomoff N., Pierce K., Courchesne E. The neurobiological basis of autism from a developmental perspective // Dev. Psychopathol. 2002. V. 14. № 3. P. 613-634.
  11. Korf J. Clinical chemistry of monoamins. San Francisco: W.H. Freeman and Company. 1984. 94 p.
  12. Bearcroft C.P., Farthing M.J.G., Perret D. Determination of 5-hydroxytryptamine, 5-hydroxyindoleacetic acid and tryptophan in plasma and urine by HPLC with fluorimetric detection // Biomed. Chromatogr. 1995. V. 9. P. 23-27.
  13. Takeuchi Y., Matsushita H., Sakai H., Kawano H., Yoshimoto K., Sawada T. Developmental Changes in Cerebrospinal Fluid Concentrations of Monoamine-Related Substances Revealed With a Coulochem Electrode Array System // J. Child Neurol. 2000. V. 15. P. 267-272.
  14. Gorina A.S., Kulinskij V.I., Kolesnichenko L.S., Mixnovich V.I. Izmeneniya soderzhaniya triptofana i ego metabolitov u detej s rannim detskim autizmom // Byulleten' SO RAMN. Novosibirsk. 2010. T. 30. № 5. S. 19-24.
  15. Chandana S.R., Behen M.E., Juhász C., Muzik O., Rothermel R.D., Mangner T.J., Chakraborty P.K., Chugani H.T., Chugani D.C. Significance of abnormalities in developmental trajectory and asymmetry of cortical serotonin synthesis in autism // Int. J. Dev. Neurosci. 2005. V. 23. № 2-3. P. 171-182.
  16. Posey D.J., McDougle C.J. Pharmacotherapeutic management of autism // Expert Opin. Pharmacother. 2001. V. 2. № 4. P. 587-600.
  17. Knudsen E.I. Sensitive periods in the development of the brain and behavior // J. Cogn. Neurosci. 2004. V. 16. № 8. P. 1412-1425.
  18. Chugani H.T. A critical period of brain development: studies of cerebral glucose utilization with PET // Prev. Med. 1998. V. 27. № 2. P. 184-188.
  19. McCain M., Mustard J.F. Early years study: Reversing the real brain drain. Toronto, ON: Ontario Children-s Secretariat. 1999. 127 p.
  20. Zhong P., Yuen E. Y., Yan Z. Modulation of neuronal excitability by serotonin-NMDA interactions in prefrontal cortex // Mol. Cell. Neurosci. 2008. V. 38. № 2. P. 290-299.
  21. Shimmura C., Suda S., Tsuchiya K.J., Hashimoto K., Ohno K., Matsuzaki H., Iwata K., Matsumoto K., Wakuda T., Kameno Y., Suzuki K., Tsujii M., Nakamura K., Takei N., Mori N. Alteration of plasma glutamate and glutamine levels in children with high-functioning autism // PLoS One. 2011. V. 6. № 10. e25340. Epub 2011 Oct 5.
  22. Perry T. L., Hansen S., Christie R. G. Amino compounds and organic acids in CSF, plasma, and urine of autistic children // Biol. Psychiatry. 1978. V. 13. № 5. P. 575-586.
  23. Belmonte M. K., Cook E. H., Anderson G. M. et al. Autism as a disorder of neural information processing: Directions for research and targets for therapy // Mol. Psychiatry. 2004. V. 9. P. 646-663.
  24. Harada E., Nishiyori A., Tokunaga Y., Watanabe Y., Kuriya N., Kumashiro R., Kuno T., Kuromaru R., Hirose S., Ichikawa K., Yoshino M. Late-onset ornithine transcarbamylase deficiency in male patients: prognostic factors and characteristics of plasma amino acid profile // Pediatr. Int. 2006. V. 48. № 2. P. 105-111.
  25. Hranilovic D., Bujas-Petkovic Z., Vragovic R., Vuk T., Hock K., Jernej B. Hyperserotonemia in adults with autistic disorder // J. Autism Dev. Disord. 2007. V. 37. № 10. P. 1934-1940.
  26. Goldberg J., Anderson G. M., Zwaigenbaum L., Hall G. B., Nahmias C., Thompson A., Szatmari P. Cortical Serotonin Type-2 Receptor Density in Parents of Children with Autism Spectrum Disorders // J. Autism Dev. Disord. 2008. V. 7. P. 23-27.
  27. McNamara I.M., Borella A.W., Bialowas L.A., Whitaker-Azmitia P.M. Further studies in the developmental hyperserotonemia model (DHS) of autism: Social, permutation and peptide changes // Brain Res. 2007. V. 3. P. 42-48.