350 rub
Journal №9 for 2012 г.
Article in number:
Oxygen, NADPH Oxydase, Antibacterial Activity of Neutrophils
Authors:
R.A. Muravieff, V.V. Rogovin
Abstract:
Neutrophils constitute 5060 % of circulating leukocyte pool in human and represent the first line of cellular defense in innate immune response to infection. Efficient antimicrobial action occurs in the phagosome of neutrophils, where secreted granular contents and reactive partly reduced species of O2 generated by the NADPH oxidase complex. In phagosome many different toxic compounds operate separately and synergistically to equip the neutrophil to response to many different types of microbes. Critical to optimal antimicrobial action in the neutrophil phagosome is the generation of hypochlorous acid, HOCl, a process requiring H2O2 produced by the phagocyte NADPH oxidase complex, the peroxidasosomal protein, myeloperoxidase, and Cl‾ . As such, the phagosome provides a specialized microenvironment, where NADPH oxidase activate kinetically inert O2 reducing it to reactive species, superoxide anion and H2O2.
The NADPH oxidase exists in «professional» phagocytes including neutrophils, and is reguired for their efficient function in innate immune system. This multi-component enzyme complex is a through membrane electron transport system that consist of a transmembrane flavocytochrome.The last interacts with a variety of activating cytosolic proteins. The discovery of this system and the elucidation of its components, organization and regulation have been important for the development of our understanding of innate immune mechanisms. In this paper we revieved the critical role of partly reduced O2 by NADPH oxidase in innate immune reactions.
Pages: 41-46
References
- Malmström B.G. Enzymology of oxygen // Annu. Rev. Biochem. 1982. V. 51. P. 21-59.
- Cross A.R., Segal A.W. The NADPH oxidase of professional phagocytes - prototype of professional phagocytes - prototype of the NOX electron transport Chain systems // Biochem. Biophys. Acta. 2004. V. 1657. № 1. P. 1-22.
- Segal A.W. How neutrophils kill microbes // Annu. Rev. Immunol. 2005. V. 23. P. 197-223.
- Quinn M.T., Ammons M.C.B., Deheo F.R. The expanding role of NADPH oxidases in health and disease : no longer just agents of death and destruction // Clin. Sci. 2006. V. 111. № 1. P.1-20.
- Faurschou M., Borregaard N. Neutrophil granules and secretory vesicles in inflammation // Microbes Infect. 2003. V. 8. № 5. P. 933-944.
- DeLeo R., Allen L.A., Apicella M., Nauseef W. M. NADPH oxidase activation and assembly during phagocytosis // J. Immunol. 1999. V. 163. № 23. P. 6732-6740.
- Shao D., Segal A.W., Dekker L.V. Lipid rafts determine efficiency of NADPH oxidase activation in neutrophils // FEBS Lett. 2003. V. 550. № 1. P. 101-106.
- Griffiths G. On phagosome individuality and membrane signaling networks // Trends Cell Biol. 2004. V. 14. № 3. P. 343-351.
- Nanseef W.M. Pin-ing down PMN priming // Blood. 2010. V. 116. № 26. P. 5788-5789.
- Tian W. Li X.J., Stull N.D., Ming W., Suh C.-J., Bissonette S.A., Yaffe M.B., Grinstein S.,Atkinson S.J., Dinauer M.C. Fc gamma R activation of the NADPH oxidase: phosphoinositide - binding protein p 40 phox regulates NADPH oxidase after enzyme assembly on the phagosome // Blood. 2008. V. 112. № 9. P. 3867-3877.
- Lee J.S., Nauseef W.M., Moeenrezkhanlou A.Monocyte p 110 alpha phosphatidylinositol 3-kinase regulates phagocytosis the phagocyte oxidase, and cytokine production // J. Leukoc. Biol. 2007. V. 81. № 14. P. 1548-1561.
- DeLeo F.R. Modulation of phagocyte apoptosis by bacterial pathogens // Apoptosis. 2004. V. 9. № 2. P. 399-413.
- Kobayashi S.D., Voyich J.M., Braughton K.R. Gene expression profiling provides insight into the pathophysiology of chronic granulomatous disease // J. Immunol. 2004. V. 172. № 2. P. 636-643.
- Essin K., Gollasch M., Rolle S., Weissgerber P., Sausbier M., Bohn E., Autenrieth I.B., Ruth P., Luft F.C., Nauseef W.M., Kettritz R. BK channels in innate immunefunctions of neutrophils and macrophages // Blood. 2009. V. 113. № 6. P. 1326-1331.
- Murphy R., DeCoursey T.E. Charge compensation during the phagocyte respiratory burst // Biochim. Biophys. Acta. 2006. V. 1757. № 5. P. 996-1011.
- Painter R.G., Valentine R.W., Lombard V.G., LaPlace S.G., Nauseef W.M., Wang G. The role of chloride anion and CFTR in killing of Pseudomonas aeruginosa by normal and CF neutrophils // J. Leukoc. Biol. 2008. V. 83. № 9. P. 1345-1353.
- Schwartz J., Leidal K.G., Femling J.K., Weiss J.P., Nauseef W.M. Neutrophil bleaching of GFP - expressing staphylococci: probing the intraphagosomal fate of individual bacteria // J. Immunol. 2009. V. 183. № 4. P. 2632-2641.
- Winterbourn C.C., Hampton M.B., Livesey J.H., Kettle A.J. // Modeling the reaction of superoxide and myeloperoxidase in the neutrophil phagosome: implications for microbial killing // J. Biol. Chem. 2006. V. 281. № 35. P. 39860-39869.
- Муравьев Р.А., Бут П.Г., Фомина В.А., Роговин В.В. Механизм бактерицидной активности в фагосомах нейтрофилов // Изв. РАН. Сер. Биология. 2002. № 4. С. 437-441.
- Pattison D.J., Davies M.J. Reactions of myeloperoxidase - derived oxidants with biological sabstrates: gaining chemical insight into human inflammatory diseases // Curr. Med. Chem. 2006. V. 13. № 4. P. 3271-3290.
- Hurst J.K., Lymar S.V. Cellularly generated inorganic oxidants as natural microbicidal agents // Acc. Chem. Res. 1999. V. 32. № 3. P. 520-528.
- Klebanoff S.J. Mieloperoxidase: friend and foe // J. Leukoc. Biol. 2005. V. 77. № 5. P. 598-625.
- Painter R.G., Valentine V.G., Lanson
N.A., Jr. Leidal Jr., K., Zhang Q., Lombard G., Thompson C., Viswanathan,
Nauseef W.M., Wang G.CFTR expression in human neutrophils and the phagosomal chlorination defect in cystic fibrosis // Biochemistry. 2006. V. 45. № 29. P. 10260-10269. - Painter R.G., Marrero L., Lombard G.A., Valentine V.G., Nauseef W.M., Wang G. CFTR - mediated halide transport in phagosomes of human neutrophils // J. Leukoc. Biol. 2010. V. 87. № 5. P. 933-942.
- Furtműller. P.G., Barner U., Obinger C. Reaction of myeloperoxidase Compound I with chloride, bromide, iodide, and thiocyanate // Biochemistry. 1998. V. 37. № 51. P. 17923-17930.
- McCaffrey R.L., Allen L.A.Francisella tularensis LVS evades killing by human neutrophils via inhibition of the respiratory burst and phagosome escape // J. Leukoc. Biol. 2006. V. 80. № 8. P.1224-1230.
- Moreland J.G., Hook J.S., Bailey G., Ulland T., Nauseef W.M.Francisella tularensisdirectly interacts with the endothelium and recruits neutrophils with a blunted inflammatory phenotype // Am. J. Physiol. Lung. Cell. Mol. Physiol. 2009. V. 296. № 6. P. 1076-1084.
- Pang Y.Y., Schwartz J., Thoendel M., Ackermann L.W., Horswill A.R., Nauseef W.M. arg-Dependent interactions of Staphylococcus aureusUSA 300 with human polymorphonuclear neutrophils // J. Innate Immun. 2010. V. 2. № 2. P. 546-559.
- Denys G.A., Davies J.C., O-Hanley P.D., Stephens J.T., Jr.In vitroand in vivo activities of E-101 solution against Acinetobacter baumanniiisolates from U.S. Military personnel // Antimicrob. Ag. Chemither. 20011. V. 55. № 2. P. 3603-3608.