350 rub
Journal №7 for 2011 г.
Article in number:
Homeostasis in Rats Tissues at Citrate Introduction under Experimental Thyrotoxicosis Development
Authors:
O.A. Safonova, T.N. Popova, L. Saidi
Abstract:
The investigation of free-radical oxidation (FO) processes intensity and activities of enzymes-antioxidants - superoxide dismutase (SOD) and catalase, in rats tissues at citrate introduction under experimental thyrotoxicosis (ET) was carried out. Because of oxidative stress development under thyroid hormones (TG) high concentrations in organism, investigation of opportunity of antioxidants application for increase of this disease therapy effectiveness is urgent. Antioxidant properties may be displayed by endogenous metabolite - citrate, due to chelating of prooxidants: Fe2+ ions, as well as of Ca2+ ions. ET at males of white rats was induced by intraperitoneal triiodothyronine introduction in 1 mg/kg of weight dose three times in 6 days. Citrate was introduced in 50 mg/kg dose 3 times. FO processes level and the general antioxidant activity was estimated by biochemiluminescence (BCL) method. The activity of enzymes was registered spectrophotometrically. The decrease of BCL parameters, enlarging under ET, was estimated in rats tissues at citrate introduction on the pathology development background. So, BCL lightsum (S) in the liver reduced in 1.2 times, in heart and blood serum - in 1.4 times; BCL maximum flash intensity (Imax) ? in liver in 1.5 times, in heart and blood serum in 1.3 times concerning the data under pathology. These BCL parameters changes, reflecting FO level, to the side of control meanings testify about these processes inhibition in animals tissues after citrate introduction. Change of BCL kinetic curve fall angle tangent (tgα2), reflecting general antioxidant system activity, in tissue of liver, heart and blood serum to the side of control was observed at citrate introduction to the animals with ET: its decrease in 1.1, 1.2 and 1.9 times accordingly concerning level at the pathology was revealed. In this time SOD and catalase specific activities, increasing under thyrotoxicosis development, also decreased. So, SOD activity in liver reduced in 1.3 times, in heart and blood serum - in 1.2 times; catalase activity fell in liver on 10 %, in heart on 16 %, in blood serum on 13 % compared with that under ET. It may be assumed, that FO level reduces in connection with citrate antioxidant properties display, that apparently is accompanied by decrease of load on the antioxidants, in particular, on SOD and catalase compared with the pathology. Binding of participating in free-radical processes development Fe2+ and Ca2+ ions by carboxyl groups of citrate may lie in the basis of this substance antioxidant action. Thus, citrate is apparent to promote metabolic processes normalization, in particular, free-radical homeostasis, in organism in conditions of TG in high concentrations damaging action.
Pages: 33-37
References
  1. Осипов А.Н., Азизова О.А., Владимиров Ю.А. Активные формы кислорода и их роль в организме // Успехи биологической химии. 1990. Т. 31. № 2. С. 180-208.
  2. Попова Т.Н. и др. Свободнорадикальные процессы в биосистемах: Учебное пособие. Старый Оскол: Кириллица. 2008. 192 с.
  3. Fernandez V., Barrientos X., Kipreos K. Superoxide radical generation, NADPH oxidase activity, and cytochrome P-450 content of rat liver microsomal fractions in an experimental hyperthyroid state: relation to lipid peroxidation // Endocrinology. 1985. V. 117. P. 496-501.
  4. Asayama K., Dobashi K., Hayashibe H. Lipid peroxidation and free radical scavengers in thyroid dysfunction in the rat: a possible mechanism of injury to heart and skeletal muscle in hyperthyroidism // Endocrinology. 1987. V. 121. №6. P. 2112-2118.
  5. Turrens J.F., Alexandre A., Lehninger A.L. Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria // Arch. Biochem. Biophys. 1985. V. 237. №2. Р. 408-414.
  6. Попов С.С. и др. Оксидативный статус и содержание цитрата в тканях крыс при экспериментальном гипертиреозе и действии мелатонина // Бюллетень экспериментальной биологии и медицины. 2007. №8. С. 170-173.
  7. Ленинджер А. Биохимия. М.: Мир. 1977. 957 с.
  8. Freminet A. Carbohydrate and acid metabolism during acute hypoxia in rats blood and heart metabolites // Comp. Biochem. and Physiol. 1981. V. 70. №3. P. 427-430.
  9. Rafalowska U., Erecinska M., Chance B. The effect of aspartate on citrate metabolism in the cytosolic fraction of brain under conditions of normoxia, hypoxia and anesthesia // J. Neurochem. 1975. V. 25. № 4. P. 497-501.
  10. Суркова И.Г., Зайцев В.Г. Влияние природных органических кислот на интенсивность свободнорадикальных процессов в двух модельных системах // Сб. трудов 4-ой национальной научно-практической конференции с международным участием «Активные формы кислорода, оксид азота, антиоксиданты и здоровье человека». Смоленск. 26-30 октября 2005. С. 94-95.
  11. Byer K., Khan S.R. Citrate provides protection against oxalate and calcium oxalate crystal induced oxidative damage to renal epithelium // J. Urol. 2005. V. 173. № 2. P. 640-646.
  12. Fernandez V., Simizu K., Barros S.B.M. Effects of hyperthyroidism on rat liver glutathione metabolism: Related enzymes - activities, efflux, and turnover // Endocrinology. 1991. V. 129. P. 85-91.
  13. Кузьменко А.И. и др. Влияние витамина D3 и экдистерона на свободнорадикальное окисление липидов // Биохимия. 1997. Т. 62. № 6. С. 712-715.
  14. Матюшин Б.Н., Логинов А.С., Ткачев В.Д. Определение супероксиддисмутазной активности в материале пункционной биопсии печени при ее хроническом поражении // Лаб. дело. 1991. № 7. С. 16-19.
  15. Королюк М.А. и др. Метод определения активности каталазы // Лаб. дело. 1988. Т. 1. С. 16-19.
  16. Lowry O.Н., et al. Protein measurement with the Folin-Рhenol reagent // J. Biol. Chem. 1951. V. 193. P. 265-275.
  17. Ллойд Э., Ледерман У. Справочник по прикладной статистике. М.: Финансы и статистика. 1990. 525 с.
  18. Кухтина Е.Н., Глущенко Н.Н. Влияние железа, цинка, меди на процессы перекисного окисления липидов // Биохимия. 1996. Т. 61. № 6. С. 993-997.
  19. Гордеева А.В., Звягильская Р.А., Лабас Ю.А. Взаимосвязь между активными формами кислорода и кальцием в живых клетках // Биохимия. 2003. Т. 68. Вып. 10. С. 1318-1322.
  20. Меерсон Ф.З. Патогенез и предупреждение стрессорных и ишемических повреждений сердца. М.: Медицина. 1984. 272 с.
  21. Попов С.С. Клиническая эффективность мелатонина и его воздействие на свободнорадикальный гомеостаз при токсическом поражении печени: Автореф. дисс. - канд. медиц. наук (специальность 14.00.05 - Внутренние болезни). Воронежская государственная медицинская академия им. Н.Н. Бурденко. Дата защиты: 1.04.08. Воронеж, 2008. 24 с.