350 rub
Journal №5 for 2011 г.
Article in number:
Melatonin Receptors and Their Agonists
Authors:
N.V. Kostiuk, V.V. Zhigulina, M.B. Belyakova, D.V. Leschenko, M.V. Minyaev
Abstract:
In recent decades the pineal hormone melatonin is used in the treatment of circadian rhythms disorders, in the therapy of cardiovascular, oncological, and other diseases. However, the short half-life period and the multiplicity of biological effects of the hormone require to find new, more metabolically stable, melatoninergic agonists. Advances in this direction came possible due to the study of biochemical and molecular biological mechanisms of melatonin action, in particular, the discovery of its numerous receptors and binding sites. In the present, it was found a several groups of molecules which pretend to the role of melatonin receptors. The greatest certainty achieved for the membrane (МТ1 and МТ2) and nuclear (RZR/ROR and RZR/ROR) receptors. Discussion concerning other binding sites of melatonin (МТ3, GPR50), is far from complete. Large-scale search for efficient agonists of melatonin receptors was launched in the late 80's. To date a great number of structurally different compounds were tested. Effective agonists were found among indole derivatives, benzoxazole, benzofuran, naphthalene, tetralin. Highly selective ligands of specific melatonin receptors were discovered. Among many of studied compounds only agonists of membranous melatonin receptors present a clinical interest. Tasimelteon, ramelteon and -methyl-6-chloromelatonin are potential drugs for the treatment of primary insomnia and restoration of disturbed circadian rhythms. Agomelatine is not only an agonist of МТ1, МТ2, but also a weak antagonist of serotonin 5-HT2С receptors, thus can be used for the treatment of depressive disorders. 2-Bromomelatonin has an analgesic effect comparable to propofol. Although information about pharmacokinetic features of the melatoninergic agonists have not yet disclosed, the available data suggest that new drugs circulate in the blood for a longer time than the natural hormone. Most of these drugs are in late stages of clinical trials or undergo licensing procedures and soon may appear on the pharmaceutical market.
Pages: 49-59
References
  1. Zawilska J.B., Skene D.J., Arendt J. Physiology and pharmacology of melatonin in relation to biological rhythms // Pharm. Reports. 2009. V. 61. № 3. P. 383-410.
  2. Арушанян Э.Б. Гормон эпифиза мелатонин и его лечебные возможности // Российский медицинский журнал. 2005. Т. 13. № 26. С. 1755-1760.
  3. Анисимов В.Н. Мелатонин. Роль в организме, применение в клинике. СПб: Система. 2007.
  4. Кветная Т.В., Князькин И.В., Кветной И.М. Мелатонин - нейроиммуноэндокринный маркер возрастной патологии. СПб: ДЕАН, 2005.
  5. Hardeland R., Poeggeler B., Srinivasan V. et al. Melatonergic drugs in clinical practice // Arzneimittelforschung. 2008. V. 58. № 1. P. 1-10.
  6. Klein D.C. Arylalkylamine N-acetyltransferase: "the Timezyme" // J. Biol. Chem. 2007. V. 282. P. 4233-4237.
  7. Falcon J., Besseau L., Fuentes M. et al. Structural and functional evolution of the pineal melatonin system in vertebrates // Ann. N.Y. Acad. Sci. 2009. V. 1163. P. 101111.
  8. Hardeland R. Melatonin, hormone of darkness and more: occurrence, control mechanisms, actions and bioactive metabolites // Cell. Mol. Life. Sci. 2008. V. 65. № 13. P. 2001-2018.
  9. Герман С.В. Мелатонин у человека // Клиническая медицина. 1993. Т. 71. № 3. С. 22-30.
  10. Арушанян Э.Б., Арушанян Л.Г. Модуляторные свойства эпифизарного мелатонина // Пробл. эндокринол. 1991. Т. 37. № 3. C. 65-68.
  11. Кветной И.М., Райхлин Н.Т., Южаков В.В. и др. Экстрапинеальный мелатонин: место и роль в нейроэндокринной регуляции гомеостаза // Бюл. эксперим. биол. и мед. 1999. Т. 127. № 4. C. 365-370.
  12. Hardeland R., Pandi-Perumal S.R., Cardinali D.P. Melatonin // Int. J. Biochem. Cell. Biol. 2006. V. 38. № 3. P. 313-316.
  13. Finocchiaro L.M., Nahmod V.E., Launay J.M. Melatonin biosynthesis and metabolism in peripheral blood mononuclear leucocytes // Biochem. J. 1991. V. 280. № 3. P. 727-731.
  14. Hardeland R. New approaches in the management of insomnia: weighing the advantages of prolonged-release melatonin and synthetic melatoninergic agonists // Neuropsychiatr. Dis. Treat. 2009. № 5. P. 341-354.
  15. Brown G.M., Pandi-Perumal S.R., Trakht I. et al. Melatonin and its relevance to jet lag // Travel Med. Infect. Dis. 2009. V. 7. № 2. P. 69-81.
  16. Escames G., Acuna-Castroviejo D. Melatonin, synthetic analogs, and the sleep/wake rhythm // Rev. Neurol. 2009. V. 48. № 5. P. 245-254.
  17. Srinivasan V., Pandi-Perumal S.R., Trakht I. et al. Pathophysiology of depression: role of sleep and the melatonergic system // Psychiatry Res. 2009. V. 165. № 3. P. 201-214.
  18. Maldonado M.D., Perez-San-Gregorio M.A., Reiter R.J. The role of melatonin in the immuno-neuro-psychology of mental disorders // Recent. Pat. CNS Drug. Discov. 2009. V. 4. № 1. P. 61-69.
  19. Арушанян Э.Б., Арушанян Л.Г. Эпифизарный мелатонин как антистрессорный агент // Эксперим. и клинич. фармакол. 1997. Т. 60. № 6. С. 71-77.
  20. Konakchieva R., Mitev Y., Almeida O.F. et al. Chronic melatonin treatment and the hypothalamo-pituitary-adrenal axis in the rat: attenuation of the secretory response to stress and effects on hypothalamic neuropeptide content and release // Biol. Cell. 1997. V. 89. № 9. P. 587-596.
  21. Reiter R.J., Tan D.X., Manchester L.C. et al. Melatonin and reproduction revisited // Biol. Reprod. 2009. V. 81. № 3. P. 445-456.
  22. Reiter R.J., Tan D.X., Korkmaz A. The circadian melatonin rhythm and its modulation: possible impact on hypertension // J. Hypertens. 2009. V. 6. P. 17-20.
  23. Cardinali D.P., Esquifino A.I., Srinivasan V. et al. Melatonin and the immune system in aging // Neuroimmunomodulation. 2008. V. 15. № 4-6. P. 272-278.
  24. Srinivasan V., Spence D.W., Trakht I. et al. Immunomodulation by melatonin: its significance for seasonally occurring diseases // Neuroimmunomodulation. 2008. V. 15. № 2. P. 93-101.
  25. Srinivasan V., Spence D.W., Pandi-Perumal S.R. et al. Therapeutic actions of melatonin in cancer: possible mechanisms // Integr. Cancer Ther. 2008. V. 7. № 3. P. 189-203.
  26. Korkmaz A., Topal T., Tan D.X. et al. Role of melatonin in metabolic regulation // Rev. Endocr. Metab. Disord. 2009. V. 10. № 4. P. 261-270.
  27. Hardeland R. Melatonin: signaling mechanisms of a pleiotropic agent // Biofactors. 2009. V. 35. № 2. P. 183-192.
  28. Jockers R., Maurice P., Boutin J.A. et al. Melatonin receptors, heterodimerization, signal transduction and binding sites: what's new - // Br. J. Pharmacol. 2008. V. 154. № 6. P. 1182-1195.
  29. Gall C., Stehle J.H., Weaver D.R. Mammalian melatonin receptors: molecular biology and signal transduction // Cell. Tissue. Res. 2002. V. 309. P. 151-162.
  30. Dubocovich M.L., Riviera-Bermudez M.A., Gerdin M.J. et al. Pharmacology, regulation and function of mammalian melatonin receptors // Front. Biosci. 2003. № 8. P. 1093-1098.
  31. Nosjean O., Nicolas J. P., Klupsch F. et al. Comparative pharmacological studies of melatonin receptors: MT1, MT2 and MT3/QR2. Tissue distribution of MT3/QR2 // Biochem. Pharmacol. 2001. V. 61. P. 1369-1379.
  32. Carlberg C. Gene regulation by melatonin // Ann. N. Y. Acad. Sci. 2000. V. 917. P. 387-396.
  33. Dubocovich M.L., Markowska M. Functional MT1 and MT2 melatonin receptors in mammals // Endocrine. 2005. V. 27. P. 101-110.
  34. Sethi S., Adams W., Pollock J. et al. C-terminal domains within human MT1 and MT2 melatonin receptors are involved in internalization processes // J. Pineal Res. 2008. V. 45. P. 212-218.
  35. Kato K., Hirai K., Nishiyama K. et al. Neurochemical properties of ramelteon (TAK-375), a selective MT1/MT2 receptor agonist // Neuropharmacol. 2005. V. 48. P. 301-310.
  36. McNulty S., Ross A.W., Shiu K.Y. et al. Phosphorylation of CREB in ovine pars tuberalis is regulated both by cyclic AMP-dependent and cyclic AMP-independent mechanisms // J. Neuroendocrinol. 1996. № 8. P. 635-645.
  37. Chan A.S., Lai F.P., Lo R.K. et al. Melatonin MT1 and MT2 receptors stimulate C-Jun N-terminal kinase via pertussis toxinsensitive and -insensitive G proteins // Cell. Signal. 2002. V. 14. P. 249-257.
  38. Pandi-Perumal S.R., Trakht I., Srinivasan V. et al. Physiological effects of melatonin: Role of melatonin receptors and signal transduction pathways // Prog. Neurobiol. 2008. V. 85. P. 335-353.
  39. Petit L., Lacroix I., Coppet P. et al. Differential signaling of human Mel1a and Mel1b melatonin receptors through the cyclic guanosine 3′-5′-monophosphate pathway // Biochem. Pharmacol. 1999. V. 58. P. 633-639.
  40. Nelson C.S., Marino J.L., Allen C.N. Melatonin receptor activate heterotrimeric G-protein coupled Kir3 channels // Neuroreport. 1996. № 7. P. 717-720.
  41. Geary G.G., Krause D.N., Duckles S.P. Melatonin directly constricts rat cerebral arteries through modulation of potassium channels // Am. J. Physiol. 1997. V. 273. P. 1530-1536.
  42. Ayoub M.A., Levoye A., Delagrange P. et al. Preferential formation of MT1/MT2 melatonin receptor heterodimers with distinct ligand interaction properties compared with MT2 homodimers // Mol. Pharmacol. 2004. V. 66. P. 312-321.
  43. Kokkola T., Vaittinen M., Laitinen J.T. Inverse agonist exposure enhances ligand binding and G protein activation of the human MT1 melatonin receptor, but leads to receptor down-regulation // J. Pineal Res. 2007. V. 43. № 3. P. 255-262.
  44. Bondi C.D., McKeon R.M., Bennett J.M. et al. MT1 melatonin receptor internalization underlies melatonin-induced morphologic changes in Chinese hamster ovary cells and these processes are dependent on Gi proteins, MEK 1/2 and microtubule modulation // J. Pineal Res. 2008. V. 44. № 3. P. 288-298.
  45. Luttrell L.M., Lefkowitz R.J. The role of ß-arrestins in the termination and transduction of G-protein-coupled receptor signals // J. Cell. Sci. 2002. V. 115. P. 455-465.
  46. Gerdin M.J., Masana M.I., Rivera-Bermuґdez M.A. et al. Melatonin desensitizes endogenous MT2 melatonin receptors in the rat suprachiasmatic nucleus: relevance for defining the periods of sensitivity of the mammalian circadian clock to melatonin // FASEB J. 2004. V. 18. P. 1646-1656.
  47. Reppert S.M., Weaver D.R., Ebisawa T. et al. Cloning of a melatonin-related receptor from human pituitary // FEBS Lett. 1996. V. 386. P. 219-224.
  48. Levoye A., Dam J., Ayoub M.A. et al. The orphan GPR50 receptor specifically inhibits MT(1) melatonin receptor function through heterodimerization // EMBO J. 2006. V. 25. P. 3012-3023.
  49. Mailliet F., Ferry G., Vella F. et al. Characterization of the melatoninergic MT3 binding site on the NRH:quinone oxidoreductase 2 enzyme // Biochem. Pharmacol. 2005. V. 71. P. 74-88.
  50. Tan D.X., Manchester L.C., Terron M.P. et al. Melatonin as a naturally occurring co-substrate of quinone reductase-2, the putative MT3 melatonin membrane receptor: hypothesis and significance // J. Pineal Res. 2007. V. 43. № 4. P. 317-320.
  51. Calamini B., Santarsiero B.D., Boutini J.A. et al. Kinetic, thermodynamic and X-ray structural insights into the interaction of melatonin and analogues with quinone reductase 2 // Biochem. J. 2008. V. 413. P. 81-91.
  52. Boutin J.A., Marcheteau E., Hennig P. et al. MT3/QR2 melatonin binding site does not use melatonin as a substrate or a co-substrate // J. Pineal Res. 2008. V. 45. № 4. P. 524-531.
  53. Giguere V., Tini M., Flock G. et al. Isoform-specific amino-terminal domains dictate DNA-binding properties of ROR, a novel family of orphan hormone nuclear receptors // Genes & Dev. 1994. V. 8. P. 538-553.
  54. Maestroni G.J.M. The immunoneuroendocrine role of melatonin // J. Pineal Res. 1993. V. 14. P. 1-10.
  55. Steinhilberg D., Brungs M., Werz O. et al. The nuclear receptor for melatonin represses 5-lipoxygenase gene expression in human B lymphocytes // J. Biol. Chem. 1995. V. 270. P. 7037-7040.
  56. Rivara S., Mor M., Bedini A. et al. Melatonin receptor agonists: SAR and applications to the treatment of sleep-wake disorders // Curr. Top. Med. Chem. 2008. V. 8. № 11. P. 954-968.
  57. Zlotos D.P. Recent advances in melatonin receptor ligands // Arch. Pharm. Chem. Life Sci. 2005. V. 338. № 5-6. P. 229-247.
  58. Flaugh M.E., Bruns R.F., Clarke D.O. et al. Preliminary clinical studies on the melatonin agonist LY156735 / Gordon Research Conference on Pineal Cell Biology, 2000, Oxford, UK. P. 73-81.
  59. Millan M.J., Gobert A., Lejeune F. et al. The novel melatonin agonist agomelatine (S20098) is an antagonist at 5-hydroxytryptamine 2C receptors, blockade of which enhances the activity of frontocortical dopaminergic and adrenergic pathways // J. Pharmacol. Exp. Ther. 2003. V. 306. P. 954-964.
  60. Nonno R., Lucini V., Spadoni G. et al. A new melatonin receptor ligand with mt1-agonist and MT2-antagonist properties // J. Pineal Res. 2000. V. 29. № 4. P. 234-240.
  61. Audinot V., Mailliet F., Lahaye-Brasseur C. et al. New selective ligands of human cloned melatonin MT1 and MT2 receptors // Naunyn-Schmiedeberg's Arch. Pharmacol. 2003. V. 367. P. 553-561.
  62. Descamps-Francois C., Yous S., Chavatte P. et al. Design and synthesis of naphthalenic dimers as selective MT1 melatoninergic ligands // J. Med. Chem. 2003. V. 46. № 7. P. 1127-1129.
  63. Epperson J.R., Deskus J.A., Gentile A.J. et al. 4-Substituted anilides as selective melatonin MT2 receptor agonists // Bioorg. Med. Chem. Lett. 2004. V. 14. № 4. P. 1023-1026.
  64. Faust R., Garratt P.J., Jones R. et al. Melatonin Agonists and Antagonists derived from 6H-Isoindolo[2.1-a]indoles, 5,6-Dihydroindolo[2,1-a]isoquinolines and 6,7-Dihydro-5H-benzo[3,4]azepino-[1,2-a]indoles //  J. Med. Chem. 2000. V. 43. P. 1050-1061.
  65. Molinari E.J., North P.C., Dubocovich M.L. 2-[125I]iodo-5-methoxycarbonylamino-N-acetyltryptamine: a selective radioligand for the characterization of melatonin ML2 binding sites // Eur. J. Pharmacol. 1996. V. 301. № 1-3. P. 159-168.
  66. Wiesenberg I., Missbach M., Kahlen J. P. et al. Transcriptional activation of the nuclear receptor RZR alpha by the pineal gland hormone melatonin and identification of CGP 52608 as a synthetic ligand // Nucleic Acids Res. 1995. V. 23. № 3. P. 327-333.
  67. Witt-Enderby P.A., Li P.K. Melatonin receptors and ligands. Vitam. Horm. 2000. V. 58. P. 321-354.
  68. Steinhilberg D., Carlberg C. Melatonin receptor ligands // Exp. Opin. Ther. Patents. 1999. № 9. P. 281-290.
  69. Depreux P., Lesieur D., Mansour H.A. et al. Synthesis and structure-activity relationships of novel naphthalenic and bioisosteric related amidic derivatives as melatonin receptor ligands // Med. Chem. 1994. V. 37. P. 3231-3239.
  70. Tarzia G., Diamantini G., Giacomo B. et al. 1-(2-Alkanamidoethyl)-6-methoxyindole derivatives: a new class of potent indole melatonin analogues // J. Med. Chem. 1997. V. 40. P. 2003-2010.
  71. Yous S., Andrieux J., Howell H.E. et al. Novel naphthalenic ligands with high affinity for the melatonin receptors // J. Med. Chem. 1992. V. 35. P. 1484-1486.
  72. Giacomo B., Bedini A., Spadoni G. et al. Synthesis and biological activity of new melatonin dimeric derivatives // Bioorg. Med. Chem. 2007. V. 15. P. 4643-4650.
  73. Missbach M., Jagher B., Sigg I. et al. Thiazolidine diones, specific ligands of the nuclear receptor retinoid Z receptor/retinoid acid receptor-related orphan receptor alpha with potent antiarthritic activity // J. Biol. Chem. 1996. V. 271. № 23. P. 13515-13522.
  74. Arendt J. Melatonin and its agonists: an update // Br. J. Psychiatry 2008. V. 193. P. 267-269.
  75. Doghramji K. Melatonin and its receptors: a new class of sleep-promoting age // J. Clin. Sleep. Med. 2007. V. 3. № 5. P. 17-23.
  76. Bourin M., Mocaer E., Porsolt R. Antidepressant-like activity of S 20098 (agomelatine) in the forced swimming test in rodents: involvement of melatonin and serotonin receptors // J. Psychiatry Neurosci. 2004. V. 29. P. 126-133.
  77. Naguib M., Baker M.T., Spadoni G. et al. The hypnotic and analgesic effects of 2-bromomelatonin // Anesth. Analg. 2003. V. 97. № 3. P. 763-768.
  78. Karim A., Tolbert D., Cao C. Disposition kinetics and tolerance of escalating single doses of ramelteon, a high affinity MT1 and MT2 melatonin receptor agonist indicated for the treatment of insomnia // J. Clin. Pharmacol. 2006. V. 46. P. 140-148.