350 rub
Journal №12 for 2011 г.
Article in number:
Matrix Metalloproteinases (MMPs) and Their Tissue Inhibitors (TIMPs), Role in the Breast Cancer Development
Authors:
T.T. Berezov, O.M. Kuznetsova, A.Yu. Nazarenko, Yu.V. Kruk, I.V. Tereshkina
Abstract:
The biological roles of the matrix metalloproteinases (MMPs) have been traditionally associated with the turnover of the components of the extracellular matrix. MMP regulate cell behavior both through finely controlled proteolytic processing of a large variety of signaling molecules and direct interactions between the different protease and protease inhibitor families forming a complex network with MMPs acting as key components. This makes the ability of tumor cells to change shape and easily move through tissue disorganizing the normal micro architecture. The range of tissue inhibitors of metalloproteinases (TIMP) functions varies from controlling MMP activities to the inhibition of several of the disintegrin-metalloproteinases, ADAMs and ADAMTSs. Both MMPs and TIMPs regulate tumor progression including tumor angiogenesis. This review describes new accumulated evidences on MMP functions which matter in breast cancer development.
Pages: 37-46
References
  1. Cancer Stat Fact Sheets [электронный ресурс]// Surveillance Epidemiology and End results. National Cancer Institute. 2010. URL: http://seer.cancer.gov.
  2. Handsley M. M., Edwards D. R. Metalloproteinases and their inhibitors in tumor angiogenesis // Int. J. Cancer. 2005. V. 6. № 115. P. 849-860.
  3. Fata J. E., Werb Z., Bissell M. J. Regulation of mammary gland branching morphogenesis by the extracellular matrix anf its remodelling enzymes // Breast Cancer Res. 2004. V. 1. № 6. P. 1-11.
  4. Deryugina E. I., Quigley J. P. Pleiotropic roles of matrix metalloproteinases in tumor angiogenesis: Contrasting, overlapping and compensatory functions // Biochimica and Biophysica Acta. 2010. V. 1. № 1083. P. 103-120.
  5. Banerjee S., Dowsett M., Ashworth A., Martin L-A. Mechanisms of disease: angiogenesis and the management of breast cancer // Nature Clinical Practice Oncology. 2007. V. 9. № 4. P. 536-550.
  6. Radisky D. C., Hartmann L. C. Mammary involution and breast ca ncer risk: transgenic models and clinical studies // J. Mammary Gland Biol. Neoplasia. 2009. V. 2. № 14. P. 181-191.
  7. Levental K. R., Yu H. et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling // Cell. 2009. V. 5. № 139. P. 891-906.
  8. Bourboulia D., Stetler-Stevenson W.G. Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs): Positive and negative regulators in tumor cell adhesion // Seminars in cancer biology. 2010. V. 3. № 20. P. 161-168.
  9. Arroyo A. G., Iruela-Arispe M. L. Extracellular matrix, inflammation, and the angiogenic response // Cardiovascular research. 2010. V. 2. № 86. P. 226-235.
  10. Rodriguez D., Morrison C. J., Overall C. M. Matrix metalloproteinases: what do they do - New substrates and biological roles identified by murine models and proeomics // Biochimica and Biophysica Acta. 2010. V. 1. № 1083. P. 39-54.
  11. Page-McCaw A., Ewald A. J., Werb Z. Matrix metaloproteinases and the regulation of tissue remodelling // Nat. Rev. Mol. Cell Biol. 2007. V. 3. № 8. P. 221-233.
  12. Jezierska A., Motyl T. Matrix metalloproteinase-2 in breast cancer progression: A mini-review // Med. Sci. Monit. 2009. V. 2. № 15. P. RA32-40.
  13. Fanjul-Fernandez M., Folgueras A. R., Cabrera S., Lopez-Otin C. Matrix metalloproteinases: Evolution, gene regulation and functional analysis in mouse models // Biochimica and Biophysica Acta. 2010. V. 1. № 1083. P. 3-19.
  14. Kessenbrock K., Plaks V., Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment // Cell. 2010. V. 1. № 141. P. 52-67.
  15. Boire A., Covic A. et al PAR1 is a matrix metalloprotease-1 receptor that promotes invasion and tumorigenesis of breast cancer cells // Cell. 2005. V. 3. № 120. P. 303-313.
  16. Kajita M. et al Membrane-type 1 matrix metalloproteinase cleaves CD44 and promotes cell migration // J Cell Biol. 20012001. V. 5. № 153. P. 893-904.
  17. Lu X., Wang Q. et al. ADAMTS1 and MMP1 proteolytically engage EGF-like ligands in an osteolytic signaling cascade for bone metastasis // Genes Dev. 2009. V. 16. № 23. P. 1882-1894.
  18. Brew K., Nagase H. The tissue inhibitors of metalloproteinases (TIMPs): an ancient family with structural and functional diversity // Biochimica and Biophysica Acta. 2010. V. 1. № 1083. P. 55-71.
  19. Beadeux J.L. Giral P., Bruckert E. et al. Matrix metalloproteinases, inflammation and atherosclerosis: therapeutic perspectives. // Clin. Chem. Lab. Med. 2004. V. 2. № 42. P. 121-31.
  20. Tayebjee M.H., Lip G.Y., MacFadyen R.J. Matrix metalloproteinases in coronary artery disease: clinical and therapeutic implications and pathological significance // Curr. Med. Chem. 2005. V. 8. № 12. P. 917-25.
  21. Kadoglou N.P., Daskalopoulou S.S., Perrea D. et al. Matrix metalloproteinases and diabetic vascular complications. // Angiology. 2005. V. 2. № 56. P. 173-89.