350 rub
Journal №10 for 2011 г.
Article in number:
Characteristics of Angiogenesis in Mammary Gland
Keywords:
angiogenesis
vasculogenesis
vascular mimicry
glomerular angiogenesis
vascular endothelial growth factor
hypoxia
Authors:
O.M. Kuznetsova
Abstract:
Changes of the angiogenic factors activity in healthy mammary gland is a normal physiological process controlled by sex hormones that affect the estrogen-sensitive element, which is localized in the gene for vascular endothelial growth factor (VEGF). Cyclical changes in the concentrations of VEGF take place in the healthy mammary gland in vivo during the menstrual cycle. So in the luteal phase, when estradiol and progesterone concentrations tend to increase, the concentration of VEGF in the extracellular space in tissues of the breast increased doubly. At the same time, significant changes in plasma levels of this factor was not observed. VEGF may be involved in the mechanisms that cause premenstrual mastalgia.
Blood supply of the breast tumor may effects through several mechanisms. These include the remodeling of blood vessels, vasculogenesis, vascular glomerular mimicry and angiogenesis. Each of the mechanisms may be of particular value in a single type of tumor or at a certain stage of tumor development, but the relative role of each in human tumors is unknown.
Key regulators of angiogenesis are vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), placental growth factor α (PDGF α), transforming growth factor (TGF ), angiopoietin, and others, the main promoters of which are a series of mechanical and metabolic factors such as hypoxia.
Hypoxia is characteristic of solid tumors. Hypoxia is an important inducer of the synthesis of VEGF. Its effect is mediated by hypoxia-inducible transcription factors 1α and 2α. The overexpression of HIF-1α and HIF-2α is the characteristic of the most tumor cells. Moreover, overexpression of HIF-α is associated with the growth rate and metastatic potential of tumors. Increasing the number of the HIF-1α-positive cells in breast cancer correlates with advanced stages of the disease and poor prognosis. The role of other VEGF family members is in the stage of identification. If an ability of the tumor to secrete VEGF-A is limited, other homologs of VEGF may be induced for the activation of the new blood vessels formation. Concentration of the VEGF-B, VEGF-C and VEGF-D is associated with the central metastatic disease, prognosis, and the density of lymph vessels.
Pages: 5-13
References
- Adair T.H., Montani J.P. Angiogenesis. San Rafael. USA. 2010.
- Shibuya M. Vascular endothelial growth factor receptor-1 (VEGFR-1/Flt-1): a dual regulator for angiogenesis. // Angiogenesis. 2006. V. 9(4). P. 225-30.
- Nagy J., Benjamin L., Zeng H., Dvorak A., Dvorak H. Vascular permeability, vascular hyperpermeability and angiogenesis // Angiogenesis. 2008. V. 11. P. 109-119.
- Hatake K., Tokudome N., Ito Y. Next Generation Molecular Targeted Agents for Breast Cancer:Focus on EGFR and VEGFR Pathways // Breast Cancer. 2007. V. 14(2). P. 156-162.
- Mueller M.D., Vigne J.L., Minchenko A., Lebovic D.I., Leitman D.C., Taylor R.N. Regulation of vascular endothelial growth factor (VEGF) gene transcription by estrogen receptors alpha and beta // Proc. Natl. Acad. Sci USA. 2000. V. 97. P. 10972-10977.
- Hyder S.M. Sex-steroid regulation of vascular endothelial growth factor in breast cancer // Endocr. Relat. Cancer. 2006. V. 13. P. 667-687.
- Nie D., Honn K.V. Eicosanoid regulation of angiogenesis in tumors // Semin. Thromb. Hemost. 2004, V. 30. P. 119-125.
- Leek R.D., Harris A.L. Tumor-associated macrophages in breast cancer // Mammary Gland Biol Neoplasia 2002. V. 7. P. 177-189.
- Zagouri F., Sergentanis Th., Zografos G. Precursors and preinvasive lesions of the breast: the role of molecular prognostic markers in the diagnostic and therapeutic dilemma // World Journal of Surgical Oncology. 2007. V. 5. P. 57-62.
- Angelo L., Kurzrock R. Vascular Endothelial Growth Factor and Its Relationship to InflammatoryMediators // Clin. Cancer Res. 2007. V.13(10). P. 2825-2830.
- Karamysheva A.F. Mechanisms of Angiogenesis. Biochemistry (Moscow). 2008. V. 73. № 7. P. 751-762.
- Boudreau N., Myers C. Breast cancer-induced angiogenesis: multiple mechanisms and the role of the microenvironment // Breast Cancer Res. 2003. V. 5. P. 140-146.
- Fox S., Generali D., Harris A. Breast tumour angiogenesis // Breast Cancer Research. 2007. V. 9. P. 216-222.
- Lee T.H., Seng S., Sekine M., Hinton C., Fu Y. et al. Vascular endothelial growth factor mediates intracrine survival in human breast carcinoma cells through internallyexpressed VEGFR1/FLT1 // PLoS Med. 2007. V. 4(6). P. 186-194.
- Schneider B.P., Miller K.D. Angiogenesis of Breast Cancer // Clin Oncol. 2005. V. 23. P. 1782-1790.
- Filho A.L., Lopes J.M., Schmitt F.C. Angiogenesis and Breast Cancer // Journal of Oncology. 2010. V. Article ID 576384. 7 p.
- Uzzan B., Nicolas P., Cucherat M., Perret G.Y. Microvessel density as a prognostic factor in women with breast cancer: a systematic review of the literature and meta-analysis // Cancer Res. 2004. V. 64. P. 2941-2955.
- Banerjee S., Dowsett M., Ashworth A., Martin L. Mechanisms of Disease: angiogenesis and the management of breast cancer // Nat. Clin. Pract. Oncol. 2007. V. 4(9). P. 536-50.
- Bando H. Anti-VEGF Therapy in Breast Cancer // Breast Cancer. 2007. V. 14(2). P. 163-173.
- Normanno N., Morabito A., Luca A., Piccirillo M.C., Gallo M., Maiello M.R., Perrone F. Target-based therapies in breast cancer: current status and future perspectives // Endocrine-Related Cancer. 2009. V. 16. P. 675-702.
- Vaupel P., Mayer A., Briest S., Hockel M. Hypoxia in breast cancer: role of blood flow, oxygen diffusion distances, and anemia in the development of oxygen depletion // Adv Exp Med Biol. 2005. V. 566. P. 333-342.
- Nagy J., Benjamin L., Zeng H., Dvorak A., Dvorak H. Vascular permeability, vascular hyperpermeability and angiogenesis // Angiogenesis. 2008. V. 11. P.109-119.
- Nagy J.A., Chang S.-H., Dvorak A.M., Dvorak H.F. Why are tumour blood vessels abnormal and why is it important. to know - // British Journal of Cancer. 2009. V. 100. P. 865-869.
- Harris A.L. Hypoxia: a key regulatory factor in tumour growth // Nat Rev Cancer. 2002. V. 2. P. 38-47.
- Morrow P.K., Zambrana F., Esteva F.J. Advances in systemic therapy for HER2-positive metastatic breast cancer // Breast Cancer Research. 2009. V. 11. P. 207.
- Konno H., Yamamoto M., Ohta M. Recent Concepts of Antiangiogenic Therapy // Surg. Today. 2010. V. 40. P. 494-500.
- Medinger M., Fischer N., Tzankov A. Vascular Endothelial Growth Factor-Related Pathways in Hemato-Lymphoid Malignancies // Journal of Oncology. 2010. V. 1. P. 13-16.
- Kakolyris S, Fox SB, Koukourakis M, Giatromanolaki A, Brown N, Leek RD, Taylor M, Leigh IM, Gatter KC, Harris A.L. Relationship of vascular maturation in breast cancer blood vessels to vascular density and metastasis, assessed by expression of a novel basement membrane component, LH39 // Br. J. Cancer. 2000. V. 82. P. 844-851.
- Patan S. Vasculogenesis and angiogenesis as mechanisms of vascular network formation, growth and remodeling // J. Neurooncol. 2000. V. 50. P. 1-15.
- Gunsilius E., Duba H.C., Petzer A.L., Kahler C.M., Grunewald K., Stockhammer G., Gabl C., Dirnhofer S., Clausen J., Gastl G. Evidence from a leukaemia model for maintenance of vascular endothelium by bone-marrow-derived endothelial cells // Lancet. 2000. V. 355. P. 1688-1691.
- Rafii S. Circulating endothelial precursors: mystery, reality, and promise // J. Clin. Invest. 2000. V. 105. P. 17-19.
- Peters B.A., Diaz L.A., Polyak K., Meszler L., Romans K., Guinan E.C., Antin J.H., Myerson D., Hamilton S.R., Vogelstein B., et al. Contribution of bone marrow-derived endothelial cells to human tumor vasculature // Nat. Med. 2005. V. 11. P. 261-262.
- Young P.P., Vaughan D.E., Hatzopoulos A.K. Biologic properties of endothelial progenitor cells and their potential for cell therapy // Prog. Cardiovasc Dis. 2007. V. 49. P. 421-429.
- Lyden D., Hattori K., Dias S., Costa C., Blaikie P., Butros L., Chadburn A., Heissig B., Marks W., Witte L., et al. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth // Nat. Med. 2001. V. 7. P. 1194-1201.
- Ziegelhoeffer T., Fernandez B., Kostin S., Heil M., Voswinckel R., Helisch A., Schaper W. Bone marrow-derived cells do not incorporate into the adult growing vasculature // Circ. Res. 2004. V. 94. P. 230-238.
- Peters B.A., Diaz L.A., Polyak K., Meszler L., Romans K., Guinan E.C., Antin J.H., Myerson D., Hamilton S.R., Vogelstein B., et al. Contribution of bone marrow-derived endothelial cells to human tumor vasculature // Nat. Med. 2005. V. 11. P. 261-262.
- Young P.P., Vaughan D.E., Hatzopoulos A.K. Biologic properties of endothelial progenitor cells and their potential for cell therapy // Prog. Cardiovasc Dis. 2007. V. 49. P. 421-429.
- Lyden D., Hattori K., Dias S., Costa C., Blaikie P., Butros L., Chadburn A., Heissig B., Marks W,. Witte L., et al. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth // Nat. Med. 2001. V. 7. P. 1194-1201.
- Ziegelhoeffer T., Fernandez B., Kostin S., Heil M., Voswinckel R., Helisch A., Schaper W. Bone marrow-derived cells do not incorporate into the adult growing vasculature // Circ. Res. 2004. V. 94. P. 230-238.
- Shirakawa K., Wakasugi H., Heike Y., Watanabe I., Yamada S., Saito K., Konishi F. Vasculogenic mimicry and pseudo-comedo formation in breast cancer // Int. J. Cancer. 2002. V. 99. P. 821-828.
- Brat D.J., Van Meir E.G. Glomeruloid microvascular proliferation orchestrated by VPF/VEGF: a new world of angiogenesis research // Am. J. Pathol. 2001. V. 158. P. 789-796.
- Straume O., Chappuis P.O., Salvesen H.B., Halvorsen O.J., Haukaas S.A., Goffin J.R., Begin L.R., Foulkes W.D., Akslen L.A. Prognostic importance of glomeruloid microvascular proliferation indicates an aggressive angiogenic phenotype in human cancers // Cancer Res. 2002. V. 62. P. 6808-6811.
- Dome B., Hendrix M.J., Paku S., Tovari J., Timar J. Alternative vascularization mechanisms in cancer: Pathology and therapeutic implications // Am. J. Pathol. 2007. V. 170. P. 1-15.
- Sood A.K., Seftor E.A., Fletcher M.S., Gardner L.M., Heidger P.M., Buller R.E., Seftor R.E., Hendrix M.J. Molecular determinants of ovarian cancer plasticity // Am. J. Pathol. 2001. V. 158. P. 1279-1288.
- Chang Y.S., di Tomaso E., McDonald D.M., Jones R., Jain R.K., Munn L.L. Mosaic blood vessels in tumors: frequency of cancer cells in contact with flowing blood // Proc. Natl. Acad. Sci USA. 2000. V. 97. P. 14608-14613.
- Folberg R., Hendrix M.J., Maniotis A.J. Vasculogenic mimicry and tumor angiogenesis // Am. J. Pathol. 2000. V. 156. P. 361-381.
- McDonald D.M., Munn L., Jain R.K. Vasculogenic mimicry: how convincing, how novel, and how significant - // Am. J. Pathol. 2000. V. 156. P. 383-388.
- Neufeld G., Kessler O. Pro-angiogenic cytokines and their role in tumor angiogenesis // Cancer Metastasis Rev. 2006. V. 25. P. 373-385.
- Roskoski R. Jr. Vascular endothelial growth factor (VEGF) signaling in tumor progression // Crit. Rev. Oncol. Hematol. 2007. V. 62. P. 179-213.
- Harper S., Bates D. VEGF-A splicing: the key to anti-angiogenic therapeutics - // Nat. Rev. Cancer. 2008. V. 8(11). P. 880-887.
- Schwarz Q., Ruhrberg C. Neuropilin, you gotta let me know Should I stay or should I go - // Cell Adhesion & Migration. 2010. V. 4(1). P. 61-66.
- Bielenberg D.R., Pettaway C.A., Takashima S., Klagsbrun M. Neuropilins in neoplasms: expression, regulation, and function // Exp. Cell. Res. 2006. V. 312. P. 584-593.
- Garvin S., Nilsson U.W., Dabrosin C. Effects of oestradiol and tamoxifen on VEGF, soluble VEGFR-1, and VEGFR-2 in breast cancer and endothelial cells // Br. J. Cancer. 2005. V. 93. P. 1005-1010.
- Zhang W., Ran S., Sambade M., Huang X., Thorpe P.E. A monoclonal antibody that blocks VEGF binding to VEGFR2 (KDR/Flk-1) inhibits vascular expression of Flk-1 and tumor growth in an orthotopic human breast cancer model // Angiogenesis. 2002. V. 5. P. 35-44.
- Maxwell P.H. The HIF pathway in cancer // Semin. Cell. Dev. Biol. 2005. V. 16. P. 523-530.
- Wiesener M.S., Jurgensen J.S., Rosenberger C., Scholze C.K., Horstrup J.H., Warnecke C., Mandriota S., Bechmann I., Frei U.A., Pugh C.W., et al. Widespread hypoxia-inducible expression of HIF-2alpha in distinct cell populations of different organs // FASEB J. 2003. V. 17. P. 271-273.
- Vaupel P., Mayer A., Briest S., Hockel M. Hypoxia in breast cancer: role of blood flow, oxygen diffusion distances, and anemia in the development of oxygen depletion // Adv. Exp. Med. Biol. 2005. V. 566. P. 333-342.
- Harris A.L. Hypoxia: a key regulatory factor in tumour growth // Nat. Rev. Cancer. 2002. V. 2. P. 38-47.
- Ryu K., Park C., Lee Y. Hypoxia-inducible factor 1 alpha represses the transcription of the estrogen receptor alpha gene in human breast cancer cells // Biochem. Biophys. Res. Commun. 2011. V. 407(4). P. 831-836.
- Maynard M.A., Qi H., Chung J., Lee E.H., Kondo Y., Hara S., Conaway R.C., Conaway J.W., Ohh M. Multiple splice variants of the human HIF-3 alpha locus are targets of the von Hippel-Lindau E3 ubiquitin ligase complex // J. Biol. Chem. 2003. V. 278. P. 11032-11040.
- Raval R.R., Lau K.W., Tran M.G., Sowter H.M., Mandriota S.J., Li J.L., Pugh C.W., Maxwell P.H., Harris A.L., Ratcliffe P.J. Contrasting properties of hypoxia-inducible factor 1 (HIF-1) and HIF-2 in von Hippel-Lindau-associated renal cell carcinoma // Mol. Cell. Biol. 2005. V. 25. P. 5675-5686.
- Ratcliffe P.J. HIF-1 and HIF-2: working alone or together in hypoxia - // J. Clin. Invest. 2007. V. 117. P. 862-865.
- Semenza G.L. Targeting HIF-1 for cancer therapy // Nat. Rev. Cancer. 2003. V. 3. P. 721-732.
- Kung A.L., Wang S., Klco J.M., Kaelin W.G., Livingston D.M. Suppression of tumor growth through disruption of hypoxia-inducible transcription // Nat. Med. 2000. V. 6. P. 1335-1340.
- Trastour C., Benizri E., Ettore F., Ramaioli A., Chamorey E., Pouyssegur J., Berra E. HIF-1alpha and CA IX staining in inva sive breast carcinomas: prognosis and treatment outcome // Int. J. Cancer. 2007. V. 120. P. 1451-1458.
- Schneider B.P., Miller K.D. Angiogenesis of breast cancer // J. Clin. Oncol. 2005. V. 23. P. 1782-1790.
- Kakolyris S., Fox S.B., Koukourakis M., Giatromanolaki A., Brown N., Leek R.D., Taylor M., Leigh I.M., Gatter K.C., Harris A.L. Relationship of vascular maturation in breast cancer blood vessels to vascular density and metastasis, assessed by expression of a novel basement membrane component, LH39 // Br .J. Cancer. 2000. V. 82. P. 844-851.
- Patan S. Vasculogenesis and angiogenesis as mechanisms of vascular network formation, growth and remodeling // J. Neurooncol. 2000. V. 50. P. 1-15.
- Gunsilius E., Duba H.C., Petzer A.L., Kahler C.M., Grunewald K., Stockhammer G., Gabl C., Dirnhofer S., Clausen J., Gastl G. Evidence from a leukaemia model for maintenance of vascular endothelium by bone-marrow-derived endothelial cells // Lancet. 2000. V. 355. P. 1688-1691.
- Rafii S. Circulating endothelial precursors: mystery, reality, and promise // J. Clin. Invest. 2000. V. 105. P. 17-19.
- Peters B.A., Diaz L.A., Polyak K., Meszler L., Romans K., Guinan E.C., Antin J.H., Myerson D., Hamilton S.R., Vogelstein B., et al. Contribution of bone marrow-derived endothelial cells to human tumor vasculature // Nat. Med. 2005. V. 11. P. 261-262.
- Young P.P., Vaughan D.E., Hatzopoulos A.K. Biologic properties of endothelial progenitor cells and their potential for cell therapy // Prog. Cardiovasc Dis. 2007. V. 49. P. 421-429.
- Lyden D., Hattori K., Dias S., Costa C., Blaikie P., Butros L., Chadburn A., Heissig B., Marks W., Witte L., et al. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth // Nat. Med. 2001. V. 7. P. 1194-1201.
- Ziegelhoeffer T., Fernandez B., Kostin S., Heil M., Voswinckel R., Helisch A., Schaper W. Bone marrow-derived cells do not incorporate into the adult growing vasculature // Circ. Res. 2004. V. 94. P. 230-238.
- Currie M.J., Hanrahan V., Gunningham S.P., Morrin H.R., Frampton C., Han C., Robinson B.A., Fox S.B. Expression of vascular endothelial growth factor D is associated with hypoxia inducible factor (HIF-1alpha) and the HIF-1alpha target gene DEC1, but not lymph node metastasis in primary human breast carcinomas // J. Clin. Pathol. 2004. V. 57. P. 829-834.
- Nakamura Y., Yasuoka H., Tsujimoto M., Yang Q., Imabun S., Nakahara M., Nakao K., Nakamura M., Mori I., Kakudo K. Prognostic significance of vascular endothelial growth factor D in breast carcinoma with long-term follow-up // Clin. Cancer. Res. 2003. V. 9. P. 716-721.
- Kinoshita J., Kitamura K., Kabashima A., Saeki H., Tanaka S., Sugimachi K. Clinical significance of vascular endothelial growth factor-C (VEGF-C) in breast cancer // Breast. Cancer. Res. Treat. 2001. V. 66. P. 159-164.
- Yang W., Klos K., Yang Y., Smith T.L., Shi D., Yu D. ErbB2 overexpression correlates with increased expression of vascular endothelial growth factors A, C, and D in human breast carcinoma // Cancer. 2002. V. 94. P. 2855-2861.
- Mylona E., Alexandrou P., Giannopoulou I., Liapis G., Sofia M., Keramopoulos A., Nakopoulou L. The prognostic value of vascular endothelial growth factors (VEGFs)-A and -B and their receptor, VEGFR-1, in invasive breast carcinoma // Gynecol. Oncol. 2007. V. 104. P. 557-563.
- Bergers G., Hanahan D. Modes of resistance to anti-angiogenic therapy // Nat. Rev. Cancer. 2008. V. 8(8). P. 592-603.