350 rub
Journal №1 for 2011 г.
Article in number:
To the question on influence of β-cyclodextrin complex compounds with paraaminobenzoic acid on the bioelectric activities of cerebral hemispheres cortex, capacity for work and instrumental behaviour in the experiment
Authors:
T.A. Batalova, V.A. Dorovskich, G.I. Kurochkina, M.K. Grachev, A.A. Charaev, M.L. Plastinin, A.A. Sergievich
Abstract:
-Cyclodextrin and some it derivatives, due to their unique ability for the incapsulation of various drugs, found a wide use in physiology and pharmacology. In the presented investigation the clathrate and conjugate of -cyclodextrin with paraaminobenzoic acid (PABA) were used. It is known an ability of paraaminobenzoic acid for the stimulation of physical endurance due to positive influence at the central nervous system. To proof that physiological activity is due to conjugation or inclusion of PABA in an experiment there were also used compounds which are precursors in organic synthesis. Mexidol, possessing a wide set of pharmacological activity, was taken as a standard. The investigations performed at the rats showed the positive influence of cyclodextrin clathrate and conjugate at the time of immobility in the Porsolt-s test with the reliable difference with standard. Analysis of the behaviour parameters in the modulus device pays attention at the worst indexes of emotion-anxious factor of cognitive sphere ot the animals with leading positions in the Porsolt-s test. During the registration of the bioelectric activities of cerebral hemispheres cortex the positive results were obtained for the animals which showed the worst values of cognitive component. This fact may be explained by the disconnection of integrative, cognitive mechanisms of the central nervous system and anxious state, and by the ability of chemical means to block the influence of the anxious level of laboratory animals at the processes of their training. The obtained results allow us to make a conclusion that compounds studied by us possess neurotropic activity and create the preconditions for the more profound investigation of biological activity of these and similar compounds.
Pages: 42-48
References
  1. Yung-Jato L.L., Durie, P.R., Soldin S.J.  Liquid chromatographic measurement of p-aminobenzoic acid and its metabolites in serum  // Clin. Chem. 1988. V.34 (11). Р. 2235 - 2238.
  2. Строева О.Г. Эндогенные соединения в морфогенезе и восстановительных процессах - интегрирующие и регуляторные системы: теория и практика (конф. «Онтогенез»): Биологические свойства парааминобензойной кислоты. 2000. № 31(4). С. 259 - 260.
  3. Лепорский Н.И., Каракулина Т.Т. К анализу общего действия новокаина // Труды Военно-морской акад. 1952. Т. 39. С. 50 - 51.
  4. Парааминобензойная кислота / под ред. М.И.Смирнова. М. 1974. 460 с.
  5. Uekama K., Hirayama F., Irie T. Cyclodextrin drug carrier systems // Chem. Rev. 1998. V. 98. № 5. P. 2045 - 2076.
  6. Davis M.E., Brewster M.E.  Cyclodexrin-based pharmaceutics:  Past, Present and Future // Natural Rev. Drug Discovery. 2004. V. 3. P. 1023 - 1035.
  7. Uekama K., Minami K., Hirayama F. 6a-O-[(4-Biphenil) acetil] ? α-,-β-, and ?γ-cyclodextrins and 6a-deoxy - 6a-[[4-biphenil)acetyl]amino]-α-, -β- and -γ-cyclodextrins: potential prodrugs for colon-specific delivery // J. Med. Chem. 1997. V. 40. № 17. P. 2755 - 2761.
  8. Minami K., Hirayama F., Uekama K. Colon-specific drug delivery based in a cyclodextrin prodrug release behavior of  biphenylylacetic asid from its cyclodextrin conjugates in ratintestinal tracts after oral administration // J. Pharm. Sci. 1998. V. 87. № 6. P. 715 - 720.
  9. Hirayama F., Kamada M., Yano H., et al. Prolonged plasma levels of ketoprofen after oral administration // J. Incl. Phenom. 2002. V. 44. P. 159 - 161.
  10. Yano H., Hirayama F., Kamada M. Colon-specific delivery of prednisolone-appended α-cyclodextrin conjugate: alleviation of systemic side effect after oral administration // J. Cont. Rel. 2002. V. 79. № 1 - 3. P. 103 - 112.
  11. Баталова Т.А., Доровских В.А., Пластинин М.Л. Противоспалительная активность нового синтетического соединения из β-циклодекстрина и ацетилсалициловой кислоты // Дальн.мед.журн. 2008. № 2. С. 105 - 107.
  12. Fugedi P. Synthesis and of heptakis(6-0-tert-butyldimethylsilyl) cyclomaltoheptaose octakis (6-O-erbutyldi¬methylsilyl) cyclomalto- octaose II Carbohydr. // Res. 1989. V. 192. P. 366 - 369.
  13.  Курочкина Г.И., Трушкин И.Ю., Грачев M.K., Нифантьев Э.Е. Синтез олиго-6-бром-6-дезоксипроизводных р-циклодекстрина // Ж. общ. хим. 2004. Т. 74. Вып. 10. С. 1743 - 1745.
  14. Porsolt  R.D., Anton G., Blavet  N., Jalfre  M. Behavioural despair in rats: a new model sensitive to antidepressant treatments // Eur. J. Pharmacol. 1978. V. 47. P.379 - 391.
  15. Патент № 2311763 (РФ).
  16. Баталова Т.А., Доровских В.А., Пластинин М.Л. Изучение пищедобывательного поведения в модульном устройстве / Рос. физиолог. журн. 2009. № 95(11). С. 1242 - 1246.
  17. Гнездицкий В.В. Обратная задача ЭЭГ и клиническая электроэнцефалография. М.: «МЕДпресс-информ». 2004. 624 с.
  18. Смирнов Л.Д., Дюмаева К.М. Молекулярные механизмы действия и активность направленного медико-биоло¬гического применения эмоксипана и мексидола // Бюл. Всесоюзного научного центра по безопасности биологически активных веществ. Купавна, БНЦ БАФ. 1992. № 9-10.
  19. Гланц С. Медико-биологическая статистика. М.: Практика. 1999. 459 с.
  20. Думенко В.Н. Высокочастотные компоненты ЭЭГ и инструментальное обучение. М.: Наука. 2006. 151 с.