350 rub
Journal Dynamics of Complex Systems - XXI century №3 for 2025 г.
Article in number:
Comprehensive analysis of compression algorithms and file formats of 3D models
Type of article: scientific article
DOI: 10.18127/j19997493-202503-01
UDC: 004.932
Authors:

B.S. Goryachkin1, K. S. Myshenkov2, N.S. Antsifrov3

1–3 Bauman Moscow State Technical University
1 bsgor@mail.ru, 2 myshenkovks@bmstu.ru, 3 antsifrov.nikita@mail.ru

Abstract:

Today, the problem of choosing a way to save 3D models is relevant. Created models can take up a large amount of file storage and require high computational costs when processing them. Small models load significantly faster in applications and allow system administrators to fit more data into storage and update hard drives less frequently due to fewer accesses. Reducing the weight of the file and optimizing the structure of the 3D model can be achieved by applying compression algorithms and choosing a file format suitable for the required tasks.

Goal – improve the efficiency of storing and visualizing 3D models by applying compression algorithms and using the appropriate file format.

The existing compression algorithms for three-dimensional models are considered. Their basic principles and areas of application are described. The most common 3D model file formats have been identified. The connections between compression algorithms and file formats are highlighted.

The use of 3D model compression algorithms and the use of a suitable format should reduce the file weight in storage and improve the user experience of working with 3D models in various applications. This will also reduce the processing time.

Pages: 5-17
For citation

Goryachkin B.S., Myshenkov K.S., Antsifrov N.S. Comprehensive analysis of compression algorithms and file formats of 3D models. Dynamics of complex systems. 2025. V. 19. № 3. P. 5−17. DOI: 10.18127/j19997493-202503-01 (in Russian).

References
  1. Ancifrov N.S., Myshenkov K.S. Sozdanie trekhmernoj modeli po oblaku tochek skanera LiDAR s pomoshch'yu metoda vosstanovleniya poverhnostej Puassona. Informacionno-analiticheskie i intellektual'nye sistemy dlya proizvodstva i social'noj sfery: Cb. statej II Vseross. mezhvuz. nauch.-prakt. konf. molodyh uchenyh. Moskva, ROSBIOTEKH, 28 marta 2024. Kursk: Universitetskaya kniga, 2024. S. 33–39. EDN OXBFIL (in Russian).
  2. Goryachkin B.S., Myshenkov K.S., Harlashkin A.I. Analiz metodov konceptual'nogo proektirovaniya avtomatizirovannyh informacionnyh sistem. Dinamika slozhnyh sistem – XXI vek. 2020. T. 14. № 3. S. 23–34. DOI 10.18127/j19997493-202003-02. EDN DTECTE (in Russian).
  3. Gurianov D.A., Myshenkov K.S., Terekhov V.I. Software Development Methodologies: Analysis and Classification. 2023 5th International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE). Russian Federation, Moscow, 16–18 March 2023. IEEE. 2023. V. 5. P. 1–8. DOI 10.1109/REEPE57272.2023.10086852. EDN XKKKPU.
  4. Myshenkov K.S., Gur'yanov D.A. Upravlenie programmnymi proektami: modeli zhiznennogo cikla i metodologii razrabotki, analiz i klassifikaciya. Dinamika slozhnyh sistem – XXI vek. 2024. T. 18. № 2. S. 36–58. DOI 10.18127/j19997493-202402-04. EDN EAGDOL (in Russian).
  5. Deering M.F. Geometry Compression. 22nd Annual Conference on Computer Graphics and Interactive Techniques: SIGGRAPH’95. US, California, Los Angeles, 6 – 11 Aug. 1995. New York: ACM SIGGRAPH, 1995. P. 13–20. DOI 10.1145/218380.218391.
  6. Huffman D.A. A Method for the Construction of Minimum-Redundancy Codes. IRE. IEEE, 1952. V. 40. № 9. P. 1098–1101. DOI 10.1109/JRPROC.1952.273898.
  7. Arifmeticheskoe kodirovanie. URL: https://habr.com/ru/articles/130531/ (data obrashcheniya: 17.03.2025).
  8. Rossignac J. Edgebreaker: Connectivity Compression for Triangle Meshes. IEEE Transactions on Visualization and Computer Graphics. IEEE. 1999. V. 5. № 1. P. 47–61. DOI 10.1109/2945.764870.
  9. Isenburg M. Triangle Strip Compression. Computer Graphics Forum. 2001. V. 20. № 2. P. 91–101. DOI 10.1111/1467-8659.00481.
  10. Sovremennye formaty szhatiya tekstur. URL: https://sv-journal.org/2014-1/06/ru/index.php?lang=en (data obrashcheniya: 17.03.2025) (in Russian).
  11. Iourcha K.I., Nayak K.S., Hong Z. System and method for fixed-rate block-based image compression with inferred pixel values. Patent US005956431A. US. 21.09.1999.
  12. Ström J., Akenine-Möller T. PACKMAN: Texture Compression for Mobile Phones. 31st International Conference on Computer Graphics and Interactive Techniques: SIGGRAPH '04: ACM SIGGRAPH 2004 Sketches. US, California, Los Angeles, 8–12 Aug. 2004. New York: ACM SIGGRAPH, 2004. P. 66. DOI 10.1145/1186223.1186306.
  13. PVRTC: the most efficient texture compression standard for the mobile graphics world. URL: https://blog.imaginationtech.com/pvrtc-the-most-efficient-texture-compression-standard-for-the-mobile-graphics-world/ (дата обращения: 17.03.2025).
  14. ASTC Texture Compression. URL: https://www.khronos.org/opengl/wiki/ASTC_Texture_Compression (data obrashcheniya: 17.03.2025).
  15. Rukovodstvo po szhatiyu skeletnyh animacij. URL: https://habr.com/ru/articles/491958/ (data obrashcheniya: 18.03.2025) (in Russian).
  16. STL (STereoLithography) File Format Family. URL: https://www.loc.gov/preservation/digital/formats/fdd/fdd000504.shtml (дата обращения: 19.03.2025).
  17. 3DS files. URL: https://www.adobe.com/ph_en/creativecloud/file-types/image/vector/3ds-file.html (data obrashcheniya: 19.03.2025).
  18. Polygon File Format (PLY) Family. URL: https://www.loc.gov/preservation/digital/formats/fdd/fdd000501.shtml (data obrashcheniya: 19.03.2025).
  19. Wavefront OBJ File Format. URL: https://www.loc.gov/preservation/digital/formats/fdd/fdd000507.shtml (data obrashcheniya: 19.03.2025).
  20. Autodesk Filmbox Interchange File (FBX). URL: https://www.loc.gov/preservation/digital/formats/fdd/fdd000558.shtml (data obrashcheniya: 19.03.2025).
  21. Extensible 3D (X3D) File Format Family. URL: https://www.loc.gov/preservation/digital/formats/fdd/fdd000490.shtml (data obrashcheniya: 19.03.2025).
  22. COLLADA – Digital Asset Schema Release 1.5.0. Specification. URL: https://www.khronos.org/files/collada_spec_1_5.pdf (data obrashcheniya: 19.03.2025).
  23. Blender 3D Data File (BLEND). URL: https://www.loc.gov/preservation/digital/formats/fdd/fdd000559.shtml (data obrashcheniya: 19.03.2025).
  24. 3D Manufacturing Format (3MF). URL: https://www.loc.gov/preservation/digital/formats/fdd/fdd000557.shtml (data obrashcheniya: 19.03.2025).
  25. glTF (GL Transmission Format) Family. URL: https://www.loc.gov/preservation/digital/formats/fdd/fdd000498.shtml (data obrashcheniya: 19.03.2025).
  26. Garland M., Heckbert P. Surface Simplification Using Quadric Error Metrics. 24th Annual Conference on Computer Graphics and Interactive Techniques: SIGGRAPH’97. New York: ACM SIGGRAPH, 1997. P. 209–216. DOI 10.1145/258734.258849.
  27. Hanocka R., Hertz A., Fish N., Giryes R., Fleishman S., Cohen-Or D. MeshCNN: A Network with an Edge. ACM Transactions on Graphics (TOG). 2019. V. 38(4). № 90. P. 1–12. DOI 10.1145/3306346.3322959.
  28. Google Draco. URL: https://github.com/google/draco (data obrashcheniya: 19.03.2025).
  29. Open3D. URL: https://www.open3d.org/ (data obrashcheniya: 19.03.2025).
  30. Edgebreaker Triangle-Mesh Coder Software Implementation. URL: https://github.com/uvic-aurora/edgebreaker (data obrashcheniya: 19.03.2025).
Date of receipt: 07.04.2025
Approved after review: 15.04.2025
Accepted for publication: 30.05.2025