350 rub
Journal Dynamics of Complex Systems - XXI century №3 for 2023 г.
Article in number:
Representation of a metagraph model as a category
Type of article: scientific article
DOI: 10.18127/j19997493-202303-10
UDC: 004.82
Authors:

S.S. Vinnikov1, A.N. Nardid2, G.I. Revunkov3, Yu.E. Gapanyuk4

1–4 Bauman Moscow State Technical University (Moscow, Russia)

Abstract:

A metagraph data model is a modern universal tool for describing the subject domain and the relationships between objects within it. Category theory is a well-known and well-developed mathematical apparatus that allows to study properties of relations between objects without the need to study the structure of these objects. Application of category theory to the metagraph model of data will open up new possibilities in the study of this model.

Goal. The goal of the work is to represent a set of metagraphs in the form of a category and to implement the described tool in software.

The paper considers the association operator on the set of metagraphs and metaverses. The category of metagraphs is presented. The program code allowing to work with metagraphs as categorical objects is implemented.

Categorical representation of metagraphs allows to apply the apparatus of category theory to metagraphs for further development and research of properties and features of metagraph data model, as well as to implement the software implementation of metagraph model in Haskell programming language.

Pages: 72-77
For citation

Vinnikov S.S., Nardid A.N., Revunkov G.I., Gapanyuk Yu.E. Representation of a metagraph model as a category. Dynamics of complex systems. 2023. V. 17. № 3. P. 72−77. DOI: 10.18127/j19997493-202303-10 (in Russian).

References
  1. Gapanyuk Yu.E. Etapy razvitiya metagrafovoj modeli dannyh i znanij. Integrirovannye modeli i myagkie vychisleniya v iskusstvennom intellekte: Sbornik nauchnyh trudov X Mezhdunar. nauch.-tekhn. konf. IMMV-2021. V 2-h tomah. Smolensk: Universum. 2021. T. 1. S. 190–200 (in Russian).
  2. Basu A., Blanning R.W. Metagraphs and their applications. New York: Springer, 2007.
  3. Gapanyuk Yu.E., Hanmurzin T.I., Kostyan A.A., Fadeev A.A., Brysina N.R. Ispol'zovanie metagrafovogo podhoda v konceptual'nom modelirovanii. Dinamika slozhnyh sistem – XXI vek. 2020. T. 14. № 2. S. 54–62 DOI: 10.18127/j19997493-202002-05 (in Russian).
  4. Belyanova M.A., Revunkov G.I., Afanas'ev G.I., Gapanyuk Yu.E. Avtomaticheskaya generaciya voprosov na osnove tekstov i grafov znanij. Dinamika slozhnyh sistem – XXI vek. 2020. T. 14. № 4. S. 55–64 DOI: 10.18127/j19997493-202004-06 (in Russian).
  5. Maklejn S. Kategorii dlya rabotayushchego matematika: Per. s angl. M.: Fizmatlit. 2004 (in Russian).
  6. Golubcov P.V. Aksiomaticheskoe opisanie kategorij preobrazovatelej informacii. Problemy peredachi informacii. 1999. № 35 (3). S. 80– 98; Problems Inform. Transmission. 1999. № 35 (3). S. 259–274 (in Russian).
  7. Goldblatt R. Toposy: kategornyj analiz logiki: Per. s angl. V.N. Grishina, V.V. Shokurova. Pod red. D.A. Bochvara. M.: Mir. 1983. 488 s. (in Russian).
  8. Isham C.J., Butterfield J. Some possible roles for topos theory in quantum theory and quantum gravity. Foundations of physics. 2000. V. 30. № 10. P. 1707–1735.
  9. Vereshchagin N.K., Shen' A. Nachala teorii mnozhestv. M.: MCNMO. 1999 (in Russian).
Date of receipt: 01.06.2023
Approved after review: 14.06.2023
Accepted for publication: 26.06.2023