A.A. Vetoshkin1, N.S. Grunin2, A.A. Taxtamy’sheva3, E.Yu. Nosova4, A.N. Nardid5, K.S. Myshenkov6
1–6 Bauman Moscow State Technical University (Moscow, Russia)
Metagraph data model is a modern universal tool for describing complex subject areas. Fuzzy logical inference is a powerful decisionmaking mechanism in the field of artificial intelligence. The task of integrating a data model and a decision-making mechanism for improving the quality of intelligent systems based on the metagraph approach is relevant.
Goal. The goal of the work is to integrate the metagraph model of data and knowledge with fuzzy logic inference algorithms.
Results. In the article the results of integration of metagraph model of data and knowledge with algorithms of fuzzy logical inference are reviewed. The implementation of fuzzy logical inference in the programming language Rust is considered in detail. The example of description of fuzzy logical inference on the data set of the curriculum of the department is given.
Practical meaning. Adding the capabilities of fuzzy logical inference to the metagraph data model will improve the quality of intelligent systems based on the metagraph approach.
Vetoshkin A.A., Grunin N.S., Taxtamy’sheva A.A., Nosova E.Yu., Nardid A.N., Myshenkov K.S. Peculiarities of metagraph agents implementation based on fuzzy logical inference. Dynamics of complex systems. 2023. V. 17. № 3. P. 40−50. DOI: 10.18127/j19997493202303-06 (in Russian).
- Basu A., Blanning R.W. Metagraphs and Their Applications: Integrated Series in Information Systems (ISIS). New York: Springer, 2007. V. 15. № VIII. 172 p. DOI 10.1007/978-0-387-37234-1.
- Gapanyuk Yu.E. Etapy razvitiya metagrafovoj modeli dannyh i znanij. Integrirovannye modeli i myagkie vychisleniya v iskusstvennom intellekte: Sbornik nauchnyh trudov X Mezhdunar. nauch.-tekhn. konf. IMMV-2021. V 2-h tomah. Smolensk: Universum, 2021. T. 1. S. 190–200 (in Russian).
- Chernov V.G. Nechetkie mnozhestva. Osnovy teorii i primeneniya: Ucheb. posobie. Vladimirskij gos. un-t im. A. G. i N. G. Stoletovyh. Vladimir: Izd-vo VlGU, 2018. 156 s. (in Russian)
- Vernon V. Reactive Messaging Patterns with the Actor Model: Applications and Integration in Scala and Akka. Addison-Wesley Professional, 2015. 496 p.
- Semenchenko I.I., Gapanyuk Yu.E., Revunkov G.I., Eliseev G.B. Realizaciya obrabotki metagrafov s ispol'zovaniem aktornogo podhoda. Dinamika slozhnyh sistem – XXI vek. 2019. T. 13. № 4. S. 36–45. DOI 10.18127/j19997493-201904-06 (in Russian).
- Zade L. Ponyatie lingvisticheskoj peremennoj i ego primenenie k prinyatiyu priblizhennyh reshenij. M.: Mir. 1976. 165 s. (in Russian)
- Lin T.Y., Liau C.J., Kacprzyk J. Granular Fuzzy, and Soft Computing: Encyclopedia of Complexity and Systems Science Series (ECSSS). New York: Springer, 2023. DOI 10.1007/978-1-0716-2628-3.
- Gapanyuk Yu.E., Hanmurzin T.I., Kostyan A.A., Fadeev A.A., Brysina N.R. Ispol'zovanie metagrafovogo podhoda v konceptual'nom modelirovanii. Dinamika slozhnyh sistem – XXI vek. 2020. T. 14. № 2. S. 54–62. DOI 10.18127/j19997493-202002-06 (in Russian).
- Tavalinskij D.A., Krasikov D.A. Grafodinamicheskoe modelirovanie informacionno-telekommunikacionnoj seti v interesah racional'nogo raspredeleniya resursov. Dinamika slozhnyh sistem – XXI vek. 2022. T. 16. № 3. S. 40–46. DOI 10.18127/j19997493-202203-04 (in Russian).
- Vinogradova M.V., Larionov A.S., Chernen'kij V.M. Intellektual'naya sistema dlya sbora i analiza informacii o dejstviyah pol'zovatelej ASU predpriyatiem. Dinamika slozhnyh sistem – XXI vek. 2021. T. 15. № 2. S. 28–38. DOI 10.18127/j19997493-202102-03 (in Russian).
- Rutkovskij L. Metody i tekhnologii iskusstvennogo intellekta. M.: Goryachaya liniya – Telekom, 2010. 520 c. (in Russian).