350 rub
Journal Dynamics of Complex Systems - XXI century №4 for 2022 г.
Article in number:
Modeling a guided missile homing system in state space
Type of article: scientific article
DOI: 10.18127/j19997493-202204-01
UDC: 623.51
Authors:

I.A. Chepurnov1, V.O. Chervakov2, E.A. Zhelannova3, V.V. Prokhorenko4

1-4 Bauman Moscow State Technical University (Moscow, Russia)
 

Abstract:

The mathematical apparatus of differential equations, which is used to describe the dynamics of complex automatic control systems, often turns out to be untenable due to computational difficulties. The use of the state-space method in modeling control systems allows for a clear formalization and automation of computational procedures. This paper presents a technique for modeling a guided missile homing system using the state-space method. The description of a missile homing system as a complex dynamic state-space automatic control system has undeniable advantages over classical methods.

The aim of the work is to develop a mathematical model of a guided missile homing system using the state-space method.

The article analyzes the features of modeling complex dynamic automatic control systems in the state space. The developed model of the guided missile homing system in the state space is proposed. The results of modeling the missile homing system by the method of proportional approach in the MATLAB environment are presented.

The simulation results do not contradict the theoretical data characterizing the process of missile homing to the target. The parameters of the dynamic links of the simulated homing system, as well as the initial data for modeling in the future, can be refined based on the results of the analysis of real (telemetric) parameters from full-scale work carried out to assess the accuracy of guidance in order to ensure the convergence of the results of mathematical modeling and full-scale work.

Pages: 5-16
For citation

Chepurnov I.A., Chervakov V.O., Zhelannova E.A., Prokhorenko V.V. Modeling a guided missile homing system in state space. Dynamics of complex systems. 2022. V. 16. № 4. P. 5−16. DOI: 10.18127/j19997493-202204-01 (in Russian).

References
  1. Neupokoev F.K. Strel'ba zenitnymi raketami. M.: Voenizdat. 1991. 343 s. (in Russian).
  2. Eguchi H., Yamashita T. A study of the missile guidance and control system design. Journal of the Society of Instrument and Control Engineers. 2002. № 38(12). S. 1079–1087.
  3. Pupkov K.A., Egupov N.D. Metody klassicheskoj i sovremennoj teorii avtomaticheskogo upravleniya. Sintez regulyatorov sistem avtomaticheskogo upravleniya. T. 3. M.: Izd-vo MGTU im. N.E. Baumana. 2004. 616 s. (in Russian).
  4. Demidovich G.N. Sistemy radioupravleniya. T. 2. Minsk: BGUIR. 2007. 56 s. (in Russian).
  5. Serov S.A., Chepurnov I.A. Issledovanie harakteristik sistemy komandnogo upravleniya raketoj metodom prostranstva sostoyanij. Nauka i obrazovanie: nauchnoe izdanie MGTU im. N.E. Baumana. 2011. № 10. S. 15 (in Russian).
  6. Pham H., Hill R.D., Bucco D. Limitations of performance of a missile homing system. 5th Asian Control Conference. 2004. V. 2. S. 763–770.
  7. Burenko E.A. Modelirovanie kontura upravleniya dlya radiosistem samonavedeniya pri navedenii metodom proporcional'noj navigacii. Mezhdunarodnyj nauchno-issledovatel'skij zhurnal. 2021. № 5. S. 40–60 (in Russian).
  8. Filipovskij V.M. Sistemy upravleniya v prostranstve sostoyanij. SPb.: SPbPU. 2022. 75 s. (in Russian).
  9. Mihalevich S.S., Bajdali S.A., Chuchalin I.P., Moskalev V.A. Algoritm modelirovaniya sistem avtomaticheskogo upravleniya metodom prostranstva sostoyanij. Izv. Tomskogo politekhnicheskogo universiteta. 2012. № 5. S. 233–237 (in Russian).
  10. Dokumentaciya MATLAB. CITM Eksponenta [Elektronnyj resurs]. – URL: https://docs.exponenta.ru/control/ref/lti.c2d.html (data obrashcheniya: 18.05.22).
  11. Arhangel'skij I.I., Afanas'ev P.P., Bolotov E.G. i dr. Proektirovanie zenitnyh upravlyaemyh raket. M.: Izd-vo MAI. 1999. 728 s. (in Russian).
  12. Ivojlov A.Yu., Fedorov D.S., Zhmud' V.A., Trubin V.G. Ispol'zovanie differenciruyushchego fil'tra vtorogo poryadka dlya fil'tracii signalov akselerometra i opredeleniya proizvodnoj. Avtomatika i programmnaya inzheneriya. 2014. № 4(10). S. 9–14 (in Russian).
  13. Bukhalev V.A, Boldinov V.A., Sukhachev A.B., Shapiro B.L. Control of an unmanned aerial vehicle with a thermal imaging correlation coordinator in low-frequency interference. Information-measuring and control systems. 2019. V. 17. №7. pp. 13-20. (In Russian).
  14. Golius A.B., Kozlov K.V., Los' V.F., Starovoitov E.I. Evaluation of electromagnetic effects on sins with laser gyros, installed under radar's radome. Electromagnetic Waves and Electronic Systems. 2021. V. 26. №6. pp. 17-28. (In Russian).
Date of receipt: 05.10.2022
Approved after review: 19.10.2022
Accepted for publication: 21.11.2022