350 rub
Journal Dynamics of Complex Systems - XXI century №1 for 2022 г.
Article in number:
Identification of a nonlinear system with an insensitivity zone of an elastic element, with dry and viscous friction
Type of article: scientific article
DOI: 10.18127/j19997493-202201-06
UDC: 004.89.616.8
Authors:

V.M. Nedashkovskiy1, S.A. Sakulin2, E.A. Tikhomirova3, I.G. Borovik4

1-4 Bauman Moscow State Technical University (Moscow, Russia)
 

Abstract:

The article considers the problem of identifying nonlinear dynamic systems using experimental data obtained by applying test signals to the system. The goal is to determine the unknown parameters of the (frequency) transfer function of a nonlinear dynamical system with an insensitivity zone of an elastic element and with dry and viscous friction  from experimental frequency hodographs. It was assumed that the type of transfer function of the identifiable system is known It was assumed that in obtaining the frequency characteristics of a real system hindrances intervenes with the experiment, as a result of which the points of the experimentally obtained hodograph are randomly shifted.

The search for a solution to the identification problem was carried out in the class of hodographs specified by the system model. The view of transfer function of the model is the same as the view of transfer function of the identifiable system. The search for unknown parameters of the transfer function of the system model was carried out by minimizing a given criterion (measure) of proximity of the experimentally obtained hodograph of the system and the hodograph of the system model over the entire set of experimental points. The solution of the problem of identifying a nonlinear dynamical system using a frequency hodograph is reduced to solving a system of equations that is linear with respect to unknown parameters of the transfer function of the model of system.

For a nonlinear dynamical system with an insensitivity zone of an elastic element and with dry and viscous friction a program has been developed for simulating the process of obtaining pseudo-experimental data containing random errors and determining the parameters of this system. A computational experiment was conducted to estimate the error with which the proposed algorithm determines the values of the parameters of this system. An illustrative computational experiment has shown that the error in determining the values of the system parameters is comparable with the measurement error range of the experimental values (counts) of the hodograph of this system.

Pages: 57-65
For citation

Nedashkovskiy V.M., Sakulin S.A., Tikhomirova E.A., Borovik I.G. Identification of a nonlinear system with an insensitivity zone of an elastic element, with dry and viscous friction. Dynamics of complex systems. 2022. V. 16. № 1. P. 57−65. DOI: 10.18127/j19997493-202201-06 (In Russian).

References
  1. Popov E.P., Pal'tov I.P. Priblizhennye metody issledovaniya nelinejnyh avtomaticheskih sistem. M.: GIFML. 1960. 790 s. (In Russian).
  2. Besekerskij V. A. Teoriya sistem avtomaticheskogo regulirovaniya. M.: Nauka. Glavnaya redakciya fiziko-matematicheskoj literatury. 1966. 992 c. (In Russian).
  3. Boevkin V.I., Pavlov YU. N. Regressionnyj analiz v prikladnoj zadache identifikacii. M.: Trudy MGTU im. N. E. Baumana № 546. 1990 (In Russian).
  4. Kacyuba O.A. Identifikaciya metodom naimen'shih kvadratov parametrov avtoregressii s additivnymi oshibkami izmerenij. Avtomatika i telemekhanika. 1982. № 2. s. 29–33 (In Russian).
  5. Bolkvadze G.R. Klass modelej Gammershtejna v zadachah identifikacii stohasticheskih sistem. Avtomatika i telemekhanika. 2003. № 1. S. 42–55 (In Russian).
  6. ZHuravlyov YU.V. Identifikaciya dinamicheskih harakteristik metodom proizvodyashchih funkcij // Inzhenernyj zhurnal: nauka i innovacii. 2015. vyp. 6. URL: http://engjournal.ru/catalog/mech/dsmi/1414.html (In Russian)
  7. Pavlenko S. V. Primenenie vejvletfil'tracii v procedure identifikacii nelinejnyh sistem na osnove modelej Vol'terra // Vostochno-Evropejskij zhurnal peredovyh tekhnologij. Har'kov: 2010. № 6/4 (48). S. 65–70 (In Russian).
  8. Dispersionnaya identifikaciya / Pod red. N.S. Rajbmana. M.: Nauka. 1981. 320 s. (In Russian).
  9. Pavlenko V. D. Identifikaciya nelinejnyh dinamicheskih sistem v vide yader Vol'terry na osnove dannyh izmerenij impul'snyh otklikov // Elektronnoe modelirovanie. 2010. T. 32. № 3. S. 3–18 (In Russian).
  10. Grop D. Metody identifikacii sistem. M.: Mir. 1979. 302 s. (In Russian).
  11. Dejch A.M. Metody identifikacii dinamicheskih ob"ektov. M.: Energiya. 1979. 240 s. (In Russian).
  12. Sejdzh E. P., Melsa Dzh. L. Identifikacii sistem upravleniya. M.: Nauka. 1974. 284 s. (In Russian).
  13. Sovremennye metody identifikacii sistem / Pod red. P. Ejkkhoffa. M.: Mir. 1983. 400 s. (In Russian).
  14. Osnovy avtomaticheskogo upravleniya / Pod red. V.S. Pugacheva. M.: Nauka. Glavnaya redakciya fiziko-matematicheskoj literatury. 1968. 680 s. (In Russian)
  15. Frolov S. V., SHostak R. YA. Kurs vysshej matematiki: ucheb. posobie dlya vtuzov. M.: Vysshaya shkola. 1966. 662 s. (In Russian).
Date of receipt: 7.02.2022
Approved after review: 17.02.2022
Accepted for publication: 21.02.2022