S.I. Dosko – Associate Professor,
Department «Metal-Cutting Machine Tools», Bauman Moscow State Technical University
E-mail: dosko@mail.ru
А.Yu. Spasenov – Assistant,
Department «Systems of the Automated Designing», Bauman Moscow State Technical University
E-mail: a.spasenov@bmstu.ru
K.V. Kucherov – Assistant,
Department «Computer systems and networks», Bauman Moscow State Technical University
E-mail: cvkucherov@yandex.ru
E.V. Yuganov – Engineer, VNIIAES
E-mail: dezmond-sama@mail.ru
Using an approach based on the analysis of biological systems by the methods of structural diagnostics of distributed systems allows us to obtain new important internal characteristics of systems. The data approach at the initial stages of the study of biological systems allows, without using the methods of mathematical modeling used in computational hemodynamics, to obtain the necessary parametric description of the processes with the possibility of a convenient interpretation of the results. Based on the obtained internal characteristics of the systems, further mathematical modeling of processes using equivalent schemes of technical objects is greatly simplified.
Modal decomposition of signals allows one to study the signal in different frequency ranges, and at the first stage it is proposed to use decomposition according to empirical modes according to the Huang method, and at the second stage decomposition according to analytical modes according to the Prony method. Preliminary studies have shown that this type of time-frequency analysis of the signal can give good results. Thus, the prospect of using a frequency-time Prony analysis to estimate cardiac cycle parameters seems attractive. Since frequencies, decrements, amplitudes and phases are a set of independent quantities, they and some functions of them (for example, squares of amplitudes) are the most acceptable information parameters. In this regard, the Fourier spectra do not possess independence properties. Further work involves the formation of additional diagnostic criteria using the results of spectral analysis of ECG and their experimental verification to assess their diagnostic capabilities.
The possibility of obtaining spectra of mutual transfer functions between signals of different physical nature is shown, which allows to hope for the possibility of increasing the accuracy of the analysis of the state of the cardiovascular system. In the future, it is planned to form additional diagnostic criteria based on the results of spectral analysis of ECG, SCG and mutual transfer function between signals, as well as their experimental verification to assess their diagnostic capabilities. We offer a modal synthesis procedure for analog models. The residual vector of modal parameters will be the target function.
- Butkovskij A.G. Strukturnaya teoriya raspredelennyh sistem. M.: ID «Nauka». 1977. 162 s. (in Russian).
- Kuharenko B.G. Issledovanie po metodu Proni dinamiki sistem na osnove vremennyh ryadov. Trudy MFTI. 2009. № 1. S. 176−192 (in Russian).
- Tarakanov S.A., Kuznecov V.I. Datchiki pul'sovoj volny dlya diagnostiki serdechno-sosudistoj sistemy. Vestnik novyh medicinskih tekhnologij 2013. № 1. S. 71−75 (in Russian).
- YUzbashev Z.Yu., Majskova E.A. Metody issledovaniya serdca, osnovannye na registraciinizkochastotnyh kolebanij prekardial'noj zony, ih diagnosticheskie vozmozhnosti i perspektivy. Medical Sciences. 2017. № 5. S. 74−94 (in Russian).
- Ardashev A.V., Loskutov A.Yu. Prakticheskie aspekty sovremennyh metodov analiza variabel'nosti serdechnogo ritma. M.: ID «Medpraktika-M». 2010. 64 s. (in Russian).
- Gavryushin S.S., Dos'ko S.I., Utenkov V.M., CHervova A.A. Issledovanie dinamicheskih processov s ispol'zovaniem analiza form chastotnyh dekompozicij signala na osnove metoda Proni. Vestnik MGTU im. N.E. Baumana. 2017. № 6(75). S. 126−136 (in Russian).
- Baldin A.V., Dosko S.I., Kucherov K.V., Liu Bin, Spasenov A.Yu., Utenkov V.M., Zhuk D.M. ECG Signal Spectral Analysis Approaches for High Resolution Electrocardiography. Advances in Intelligent Systems and Computing. 2019. V. 2. P. 197−209.
- Baevskij R.M. Analiz variabel'nosti serdechnogo ritma pri ispol'zovanii razlichnyh elektrokardiograficheskih system. Vestnik aritmologii. 2001. № 24. S. 66−85 (in Russian).
- Baevskij R.M., Egorov A.D., Kazaryan L.N. Metodika sejsmokardiografii. Kardiologiya. 1964. № 2. S. 87–89 (in Russian).
- Salerno D., Zanetti J. Exercise seismocardiography for detection of coronary artery disease. American Journal of Noninvasive Cardiology. 1992. V. 6. № 13. P. 321−330.
- Anohin P.K. Ocherki po fiziologii funkcional'nyh sistem. M.: Medicina. 1975. 446 s. (in Russian).
- Sobolev A.V. Metody analiza variabel'nosti serdechnogo ritma na dlitel'nyh promezhutkah vremeni. M.: ID «Medpraktika-M». 2009. 172 s. (in Russian).
- Ryabykina G.V., Sobolev A.V. Holterovskoe i bifunkcional'noe monitorirovanie EKG i arterial'nogo davleniya. M.: ID «Medpraktika-M». 2010. 320 s. (in Russian).
- Prasan K.S., Hiren K.T. On the Design of an Efficient Cardiac Health Monitoring System Through Combined Analysis of ECG and SCG Signals. Sensors. 2018. V. 379. № 18. P. 1-28.
- Fabio L., Eurico M. High-Resolution Seismocardiogram Acquisition and Analysis System. Sensors. 2018. V. 10. № 18. P. 1−14.
- Ramos-Castro J., Moreno J. Heart Rate Variability analysis using a Seismocardiogram signal. 34th Annual International Conference of the IEEE EMBS. 2012. № 5. P. 5642−5645.
- Laurin A., Khorsow F., Blaber A., Tavakolian K. Accurate and consistent automatic seismocardiogram annotation without concurrent ECG. Physiological Measurement. 2016. V. 37. № 9. P. 1−21.
- Lau C.K.E., Adve R.S., Sarkar T.K. Mutual coupling compensation based on the minimum norm with applications in direction of arrival estimation. IEEE Trans. On Antennas and Propagation. 2004. V. 52. Р. 2034−2041.
- van Trees H.L. Detection, Estimation, and Modulation Theory, Optimum Array Processing. John Wiley & Sons. New York. 2004.
- Priyanka S. Pariyal, Dhara M. Koyani, Daizy M. Gandhi, Sunil F. Yadav, Dharam J. Shah, Ankit A. Comparison based Analysis of Different FFT Architectures. I.J. Image, Graphics and Signal Processing. 2016. V. 6. Р. 41−47.
- Kiseleva A.A., Luzhnov P.V., Shamaev D.M. Verification of Mathematical Model for Bioimpedance Diagnostics of the Blood Flow in Cerebral Vessels. Advances in Intelligent Systems and Computing. 2019. V. 2. P. 251−259