350 rub
Journal Dynamics of Complex Systems - XXI century №1 for 2020 г.
Article in number:
Architecture of the system of development and support of professional intellectual activity
DOI: 10.18127/j19997493-202001-02
UDC: 004.65
Authors:

V.A. Sukhanov − Ph.D. (Eng.), Associate Professor,

Computer Science and Control Systems Department, Bauman Moscow State Technical University

E-mail: iu1suhanov@mail.ru

T.Yu. Tsibizova − Dr.Sc. (Educ.), Professor,

Computer Science and Control Systems Department, Bauman Moscow State Technical University

E-mail: mumc@bmstu.ru

Abstract:

To solve the problems of designing modern intelligent systems, it is proposed to organize and structure knowledge in such systems on the basis of the integration of production systems and the mathematical apparatus of bipartite directed graphs (Petri nets).

An approach to building a system for the development and support of professional intellectual activity of decision makers is proposed. This approach is based on the technology of knowledge-based systems (C-technology).

In constructing the knowledge and control base, a method was used based on the decomposition of network structures — representing them in the form of a set of elementary formulas (kernels of production rules), each of which can be implemented as an elementary Petri net.

A method for formalizing knowledge about a subject area is considered, which involves operating with a set of elementary units of knowledge (in particular, a set of production rules), the organization and structuring of which is carried out on the basis of the mathematical apparatus of oriented bipartite graphs (Petri nets). An algorithm for analyzing the functioning of the Petri net is presented.

On the example of a specific subject area, a model is formed that describes the interaction of autopilot, pilot and other equipment during the flight. To represent the knowledge gained, a production model was used, a base of production rules was obtained, on the basis of which a global Petri network was built, as well as several local subnets.

Thus, the architecture of the system of development and support of professional intellectual activity has been formed, providing decision makers with qualified support in making operational decisions, the place and functions of its intellectual core – the C-system, which will improve the management of complex objects by providing decision makers with qualified support in their professional intellectual activity when making operational decisions.

Pages: 23-31
References
  1. Proletarskij A.V., Berezkin D.V., Gapanyuk YU.E., Kozlov I.A., Popov A.YU., Samarev R.S., Terekhov V.I. Metody situacionnogo analiza i graficheskoj vizualizacii potokov bol'shih dannyh. Vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta im. N.E. Baumana. Seriya Priborostroenie. 2018. № 2(119). S. 98−103 (in Russian).
  2. Neusypin K.A., Proletarskij A.V., Cibizova T.YU. Sistemy upravleniya letatel'nymi apparatami i algoritmy obrabotki informacii: monografiya. M.: Izdatel'stvo MGOU, 2006. 220 s. (in Russian).
  3. Bajmuhamedov M.F. Postroenie avtomatizirovannoj sistemy upravleniya tekhnologicheskimi processami na baze produkcionnoj ekspertnoj sistemy. Agrarnyj vestnik Urala. 2013. № 8(114). S. 26−28 (in Russian).
  4. Titenko E.A., Lapina T.I., Hanis V.A., Mirtalibov T.A. Proektirovanie ekspertnyh sistem na osnove produkcionnogo podhoda. Informacionno-izmeritel'nye i upravlyayushchie sistemy. 2015. T. 13. № 6. S. 15−19 (in Russian).
  5. Lacerda B., U. Lima P. Petri net based multi-robot task coordination from temporal logic specifications. Robotics and Autonomous Systems. 2019. № 122. Р. 103289.
  6. Kulagin V.P., Dubinin V.N. Strukturnyj analiz setej Petri. Informacionnye tekhnologii. 2016. T. 22. № 1. S. 3−13 (in Russian).
  7. Fedorov N.V. Harakterizacionnyj analiz svojstv setej Petri. Gornyj informacionno-analiticheskij byulleten' (nauchno-tekhnicheskij zhurnal). 2016. № 3. S. 153−157 (in Russian).
  8. Angeli D., Manfredi S. A Petri Net approach to consensus in networks with joint-agent interactions. Automatica. 2019. № 110.  Р. 108466.
  9. Leroux J. Distance between mutually reachable Petri net configurations. Leibniz International Proceedings in Informatics. LIPIcs. 2019. № 150. Р. 47.
  10. Bondarev V.A., ZHigulyovcev YU.N., Suhanov V.A. Primenenie tekhnologij, osnovannyh na znaniyah, v upravlenii pilotiruemymi kosmicheskimi apparatami. V knige: XL Akademicheskie chteniya po kosmonavtike posvyashchennye pamyati akademika S.P. Koroleva i  drugih vydayushchihsya otechestvennyh uchenyh – pionerov osvoeniya kosmicheskogo prostranstva: sbornik tezisov. M. 2015. 356 s. (in Russian).
  11. Suhanov V.A. Analiz strukturnyh skhem slozhnyh SAR na osnove SOZ-tekhnologii. Nauka i biznes: puti razvitiya. 2018. № 11(89).  S. 79−85 (in Russian).
  12. Bashlykov A.A. Rol' cheloveka-operatora kak lica, prinimayushchego resheniya, i elementa intellektual'noj sistemy upravleniya slozhnymi tekhnologicheskimi ob"ektami. Avtomatizaciya, telemekhanizaciya i svyaz' v neftyanoj promyshlennosti. 2016. № 12.  S. 10−18 (in Russian).
  13. Tolochko S.I., CHernen'kij V.M. Analiz informacionnyh sistem i opredelenie ponyatiya informacionnaya sistema podderzhki operativnyh reshenij. Vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta im. N.E. Baumana. Seriya Priborostroenie. 2011. № S. S. 69−80 (in Russian).
  14. Suhanov V.A. Organizaciya avtomatizirovannoj sistemy upravleniya dlya lic, prinimayushchih reshenie, na osnove produkcionnoj sistemy. Nauka i biznes: puti razvitiya. 2019. № 11(101). S. 93−94 (in Russian).
Date of receipt: 3 февраля 2020 г.