350 rub
Journal Dynamics of Complex Systems - XXI century №2 for 2016 г.
Article in number:
Kinetic modeling of complex systems
Keywords:
complex system
macroscopic quantization
kinetic modeling
master equation
dissipative structure
unstability
external noise
structural restructuring
Authors:
M.B. Saikhanov - Employee of KNII of RAS. E-mail: saikhanov_musa@mail.ru
Z.Sh. Gagaeva - Employee of KNII of RAS
Abstract:
The holistic approach for describing the complex systems on the basis of macroscopic quantization of open nonequilibrium systems and generalized principle of minimum entropy production to the nonstationary case is considered. Kinetic, stochastic and topological properties of dissipative structures that are the key for building of self-consistent theory of complex systems are analyzed.
First the need of kinetic modeling of nonequilibrium systems far from equilibrium proceeding from the discrete-continuous structure of its energy spectrum is shown. The theoretical scheme that allows taking into account the inertia of an irreversible process to bring the variational equation of nonstationary evolution of open nonequilibrium systems is considered. Then the conditions at which the formation of dissipative structures occur in nonequilibrium system are analyzed. In particular it is shown that the formation of dissipative structures can occur only in a state of neutral stability of nonequilibrium system. The conditions of kinetic stability and instability of nonequilibrium system far from equilibrium are considered also.
The topological properties of nonequilibrium systems, which are integral for the holistic description of complex system evolution and directly resulting from adopted for its description of discrete-continuous model, are discussed. An explanation of the physical mechanism of formation and dissipative structures restructuring under the influence from random noise is given. It is shown that the external noise contributes to dissipative structures erosion and can induce the transitions to alternative structures.
The variational equation, taking into account the external effects of noise on nonequilibrium system near the stability limit, is formulated. It allows to interpret the effect of noise-induced stochastic resonance.
Pages: 44-50
References
- Bertalanfi L. fon. Obshhaja teorija sistem - kriticheskijj obzor // Sb. perevodov «Issledovanija po obshhejj teorii sistem». M.: Progress. 1969. S. 23−82.
- Nikolis G., Prigozhin I. Poznanie slozhnogo. M.: Mir. 1990. 358 s.
- Prigozhin I. Ot sushhestvujushhego k voznikajushhemu. M.: Nauka. 1985. 217 s.
- Sajjkhanov M.B. O termodinamicheskojj i kineticheskojj ustojjchivosti neravnovesnykh sistem // ZHurnal fizicheskojj khimii. 2006. T. 80. № 7. S. 1330−1332.
- Sajjkhanov M.B. Modelirovanie neobratimykh processov v neizotermicheskikh sistemakh // Teplofizika vysokikh temperatur. 2006. T. 44. № 6. S. 877−884.
- Sajjkhanov M.B. Kineticheskoe modelirovanie dissipativnykh struktur // Nelinejjnyjj mir. 2013. № 1. S. 44−50.
- Sajjkhanov M.B., Gagaeva Z.SH. Vtoroe nachalo termodinamiki i modelirovanie ehkosistem // Sovremennye problemy nauki i obrazovanija. 2014. № 4; URL: http://www.science-education.ru/118-14069 (data obrashhenija: 24.07.2014).
- Glensdorf P., Prigozhin I. Termodinamicheskaja teorija struktury, ustojjchivosti i fluktuacijj / M.: Editorial URSS. 2003. 280 s.
- Osipov A.I., Uvarov A.V. Kineticheskie i gazodinamicheskie processy v neravnovesnojj molekuljarnojj fizike // Uspekhi fizicheskikh nauk. T. 162. № 11. 1992. S. 1−42.
- Sajjkhanov M.B. O nekotorykh topologicheskikh svojjstvakh kineticheskogo modelirovanija neravnovesnojj sistemy // Vestnik MGU. Ser. 3. Fizicheskaja astronomija. 2012. № 1. S. 34−37.
- Smolukhovskijj M. O ponjatii sluchajjnosti i o proiskhozhdenii zakonov verojatnosti v fizike // Uspekhi fizicheskikh nauk. 1927. № 5. S. 3293−19.
- Prigozhin I., Stengers I. Porjadok iz khaosa: Novyjj dialog cheloveka s prirodojj. M.: Progress. 1986. 432 s.
- Kurushina S.E., Ivanov A.A., ZHelnov JU.V., Zavershinskijj I.P., Maksimov V.V. Modelirovanie prostranstvennykh vremennykh struktur v sisteme khishhnik-zhertva vo vneshnejj fluktuirujushhejj srede // Matematicheskoe modelirovanie. 2010. T. 22. № 10. S. 3−17.
- Trubeckov D.I. Vvedenie v sinergetiku. KHaos i struktury. Izd-e 4-e. M.: Editorial URSS. 2012. 240 s.
- KHorstkhemke V., Lefevr R. Inducirovannye shumom perekhody: Teorija i primenenie v fizike, khimii i biologii. M.: Mir. 1987. 400 s.
- Anishhenko V.S., Nejjman A.V., Moss F., SHimanskijj-Gajjer L. Stokhasticheskijj rezonans kak inducirovannyjj shumom ehffekt uvelichenija stepeni porjadka // Uspekhi fizicheskikh nauk. 1999. T. 169. № 1. S. 7−38.