350 rub
Journal Dynamics of Complex Systems - XXI century №1 for 2015 г.
Article in number:
The seismic activity impact having the influence on the groundwater state and occurrence of disastrous floods
Authors:
T.A. Trifonova - Dr. Sc. (Biol.), Professor, Head of Department of Biology and Ecology, Vladimir State University named after A.&N. Stoletovs. E-mail: tatrifon@mail.ru D.V. Trifonov - Post-graduate Student, Department of Physics and Applied Mathematics, Vladimir State University named after A.&N. Stoletovs. E-mail: matthew_sp@mail.ru
Abstract:
In article one of the mechanisms of possible influence of seismic activity on the occurrence of disastrous floods by making impact on the groundwater state is considered. We discuss the complex causes of flooding occurrence. As a dominant factor we consider the interaction of groundwater and surface water which, in dependence on the prevailing conditions including a heavy rain but not only, is defined by a non-linear trigger mechanism and is implemented in nonlinear amplification of surface runoff. The key parameter in the model is the growth of hydrostatic/hydrodynamic pressures in the deployment area for groundwater horizons in the respective transport of water transit as-sociated with well-developed 3D-cracks (i.e. faults) in the mountain ranges. As the cause of the pressure dramatically rises in the un-derground water horizons we suppose that there is the impact of tectonic processes (earthquake and/or volcanic activity). Thus, the coupling of surface and groundwater and emphasize the role of additional factors, which possibly can affect on the occurrence and development of disastrous floods in association with the traditional factors, i.e. intense precipitation, are analyzed. Seismic activity is considered as one of such factors. Natural events, which can prove the influence of seismic waves on the condition of groundwater, and therefore surface water, are considered in respect of original approaches for forecasting of disastrous floods taking into account a seismic activity. On the basis a few examples of occurring disastrous floods in 2013−2014 are described. In addition there is a brief analysis of the atmosphere pressure impact, which allows drawing a conclusion about absence of weather anomalies, which should explain the occurrence of disastrous floods. From practical point of view monitoring of dynamics in the development of hydrostatic/hydrodynamic pressures in underground aquifers (in comparison with database before and after the events, e.g. by medsurents in some network artesian wells) is an important factor in assessing the acceptable risk for territories under these events. Its combination with the monitoring of seismic activity will allow to make a more detailed analysis of these interactions for natural disaster forecasting in both fundamental aspect and the aspect of applying modern information technology (e.g. GIS-technology).
Pages: 78-86
References

 

  1. Berezhnaja T.V., Golubev A.D., Parshina L.N. Anomalnye gidrometeorologicheskie javlenija na territorii Rossijjskojj Federacii v ijule 2013 g. // Meteorologija i gidrologija. 2013. № 10. S. 114−123.
  2. Garcman B.I., Mezenceva L.I., Menovshhikova T.S., Popova N.JU. Uslovija formirovanija ehkstremalno vysokojj vodnosti rek Primorja v osenne-zimnijj period 2012 g. // Meteorologija i gidrologija. 2014. № 4. S. 77−92.
  3. Danilov-Daniljan V.I., Gelfan A.N. Katastroficheskoe navodnenie 2013 g. v bassejjne reki Amur: uslovija formirovanija, ocenki povtorjaemosti, rezultaty modelirovanija // Vodnye resursy. 2014. T. 41. № 2. S. 111−122.
  4. Zekcer I.S. Podzemnye vody kak komponent okruzhajushhejj sredy. M.: Nauchnyjj mir. 2001. 328 s.
  5. Igumnov V.A., Stepanjan G.Z. Nekotorye gidrogeokhimicheskie aspekty Spitakskogo zemletrjasenija // Izv. AN Arm. SSR. Nauki o Zemle. 1989. № 3. S. 24−33.
  6. Kissin I.G. Zemletrjasenie i podzemnye vody. M. Nauka. 1982. 176 s.
  7. Leonov M.G. Tektonika konsolidirovannojj kory. M.: Nauka. 2008. 457 s.
  8. Pinneker E.V. Osnovy gidrogeologii. Obshhaja gidrogeologija. Novosibirsk: Nauka. 1980. 225 s.
  9. Trifonova T.A. Gornoe rechnoe ruslo: ehnergeticheskaja model razvitija // Dokl. RAN. 1994. T. 337. № 3. S. 334−338. 
    Trifonova T.A. Rechnojj vodosbornyjj bassejjn kak samoorganizujushhajasja prirodnaja geosistema // Izvestija RAN. Serija geograficheskaja. 2008. № 1. S. 28−36.
  10. KHramova L.K., Parshina L.N. Pogoda na territorii Rossijjskojj Federacii v ijule 2013 g. // Meteorologija i gidrologija. 2013. № 10. S. 110−113.
  11. Bondevik S., Gjevik B., Sorensen M.B.Norwegianseichesfromthegiant 2011 Tohokuearthquake // GeophysicalResearchLetters. 2013. № 40. P. 3374−3378.
  12. Smyth J.R., Jacobsen S.D.NominallyanhydrousmineralsandEarth-sdeepwatercycle // Earth\'sDeepWaterCycle. GeophysicalMonographSeries. 2006. № 168. P. 13−28.
  13. BGR - Whymap. EHlektronnyjj resurs: http://www.whymap.org/whymap/EN/Home/whymap_node.html.
  14. GEOFONProgramGFZPotsdam: GEOFONMainpage. EHlektronnyjj resurs: http://geofon.gfz-potsdam.de.
  15. GISMETEO.RU: Pogoda v Rossii. Tochnyjj prognoz pogody (meteoprognoz) na segodnja, zavtra, vykhodnye, nedelju, mesjac EHlektronnyjj resurs: http://www.gismeteo.ru.
  16. HydrologicResponseinWell 27F2 SOW 019 toWorldwideEarthquakes: NEARTHEEASTCOASTOFHONSHU, JAPAN, Mar 11, 2011, M9.0 earthquake. EHlektronnyjj resurs: http://va.water.usgs.gov/earthquakes/20110311a.html.
  17. PotentiallyinducedearthquakesinOklahoma, USA: Linksbetweenwastewaterinjectionandthe 2011 Mw 5.7 earthquakesequence. EHlektronnyjj resurs: http://geology.gsapubs.org/content/early/2013/03/26/G34045.1.abstract.