350 rub
Journal Dynamics of Complex Systems - XXI century №5 for 2014 г.
Article in number:
Mathematical modeling and study of electrical conductivity of discontinuous metal and semiconductor films
Authors:
S.M. Arakelian - Dr. Sc. (Phys.-Math.), Professor, Vladimir State University named after A.&N. Stoletovs. E-mail: arak@vlsu.ru D.V. Buсharov - Assistant, Department of physics and applied mathematics, Vladimir State University named after A.&N. Stoletovs. E-mail: buharovdn@gmail.com A.V. Istratov - Post-graduate Student, Department of physics and applied mathematics, Vladimir State University named after A.&N. Stoletovs. E-mail: laser@vlsu.ru S.V. Kutrovskay - Ph. D. (Phys.-Math.), Associate Professor, Department of physics and applied mathematics, Vladimir State University named after A.&N. Stoletovs. E-mail: 11stella@mail.ru A.O. Kucherik - Ph. D. (Phys.-Math.), Leading Research Scientist, Department of physics and applied mathematics, Vladimir State University named after A.&N. Stoletovs. E-mail: kucherik@vlsu.ru A.V. Osipov - Research Engineer, Department of physics and applied mathematics, Vladimir State University named after A.&N. Stoletovs. E-mail: patifon@mail.ru
Abstract:
In this paper the results of modeling of the growth of island thin film by using a diffusion model of growth and theoretical investigation of its electrical conductivity in the approximation of the Sommerfeld-Bethe-Hill were presented. With increasing in the sticking probability of the particles forming more branched fractal structure, and with a decrease in the sticking probability moving particle can diffuse deeper into the fractal structure that allows you to simulate islands «round» shape. Current-voltage characteristic for low voltages is linear. The tunneling currents dominate at low temperatures and small gaps, the thermionic emission dominates at elevated temperatures in the region of large gaps. The simulation allows a qualitative assessment of the nature and conditions of the preparation of thin nanofilms with predetermined morphological properties and assess their conductive properties.
Pages: 36-40
References

 

  1. Antipov A.A., Arakeljan S.M., Kutrovskaja S.V., Kucherik A.O. EHlektricheskie svojjstva metallicheskikh klasternykh struktur na poverkhnosti diehlektrikov // Pisma v ZHTF. 2014. T. 40. № 12. C. 73−80.
  2. Beznosjuk S.A., Lerkh JA.V., ZHukovskaja T.M. Kompjuternoe modelirovanie samoorganizacii fraktalnykh klasternykh nanodendritov // Polzunovskijj vestnik. 2005. № 4-1. S. 143−151.
  3. Smirnova K.I. Tonkie plenki v mikroehlektronike. Ucheb. posobie. Tomsk: Tomskijj gosudarstvennyjj universitet sistem upravlenija i radioehlektroniki. 2007. 94 s.
  4. CHernov P.S., Vasilev V.A. Model rosta poverkhnosti tonkikh plenok materialov // Innovacionnye tekhnologii. Uljanovsk: UlGU. 2010. № 3. S. 42−50.
  5. Offringa A. Diffusion Limited Aggregation. URL: http://www.astro.rug.nl/~offringa/Diffusion Limited Aggregation.pdf.