350 rub
Journal Dynamics of Complex Systems - XXI century №4 for 2014 г.
Article in number:
Formation and adaptation of the model of flexible process based on logs analysis
Authors:
М. N. Rudometkina - Post-graduate Student, Computer Science-s Department, Cybernetics-s Institute, National Research Tomsk Polytechnic University. E-mail: mn.rud@inbox.ru V. G. Spitsyn - Dr.Sc. (Eng.), Professor, Computer Science-s Department, Cybernetics-s Institute, National Research Tomsk Polytechnic University. E-mail: spvg@tpu.ru
Abstract:
In this article has been analyzed existing means of intelligent processes analyzing. Here is substantiated the topicality of a common approach development for building an engineering of model of flexible process and his adapting to features of a subject domain with using of process-mining methods. As an input data for proposed approach are used logs of processes of ensemble events, containing of sets of all possible trajectories of realization processes. Application of the flexible process model is allows to configure and to adapt this model for a specific subject domain. The adjustment of the flexible process model is executing via selection of necessary functions or operations, as well as refinement the order of execution. The flexible process model is based on an algebra-logical apparatus of finite predicates and logic networks in the form of a binary predicate system. The plotting of the whole model of the process is occurs via union of logs by dint of logical networks. The adaptation of the model is occurs by the predicates selection. These predicates are prescribes permissible interconnections between actions of the process from the complete model.
Pages: 4-8
References

 

  1. Van der Aalst W.M.P. Process Mining: Discovery, Conformance and Enhancement of Business Processes. Springer, 2011. 370r.
  2. Repin V., Elifirov V. Processnyjj podkhod k upravleniju. Modelirovanie biznes-processov. M.: Standartyikachestvo. 2008.196 s.
  3. Gottschalk F., van der Aalst W.M.P., Jansen-VullersM.H. Merging Event-Driven Process Chains // OTM 2008. Part I. CoopIS. 2008. V. 5331 of Lecture Notes in Computer Science. P. 418-426. Berlin Heidelberg. 2008. Springer Verlag.
  4. La Rosa M., Dumas M., Uba R., Dijkman R.Business Process Model Merging: An Approach to Business Process Consolidation // ACM Transactions on Software Engineering and Methodology. 2012. № 22(2).
  5. Gottschalk F., van der Aalst W.M.P., Jansen-Vullers M.H. Mining Reference Process Models and their Configurations // OTM 2008 Workshops. V. 5333 of Lecture Notes in Computer Science. P. 263-272. Berlin Heidelberg. 2008. Springer Verlag.
  6. Rosemann M., van der Aalst W.M.P. A Configurable Reference Modelling Language // QUT Technical Report. FIT-TR-2003-05. Queensland University of Technology. Brisbane. 2003.
  7. Rosemann M., van der Aalst W.M.P. A Configurable Reference Modelling Language // Information Systems. 2007.  V. 32(1). P. 1-23.
  8. Li C., Reichert M., Wombacher A. The MINADEPT Clustering Approach for Discovering Reference Process Models Out of Process Variants // International Journal of Cooperative Information Systems. 2010. № 19(3-4) . P. 159-203.
  9. Bondarenko M.F., SHabanov-Kushnarenko JU.P. Teorija intellekta. Uchebnik. KHarkov: izd-vo SMIT. 2007. 576 s.
  10. Bοndapenkο M.F., CHikina V.A.,SHabanov-Kushnarenko JU.P.Uravnenija teorii intellekta // Biοnika intellekta. 2011. №3(77). C. 30-45.
  11. Rudometkina M.N. Intellektualnyjj analiz gibkikh processov: adaptacija bazovykh ehlementov processnojj modeli / Materialy IIVseros. nauch. Internet-konf. s mezhdunar. uchastiem.«Sovremennye sistemy iskusstvennogo intellekta i ikh prilozhenija v nauke»2014.S. 72-77.