350 rub
Journal Dynamics of Complex Systems - XXI century №2 for 2009 г.
Article in number:
Investigation of Structural-phase Transformations and Optical Properties of Composites on the Basis of Silicon Nanoclusters Embedded in Silicon Oxide Matrix
Authors:
V.N. SEMINOGOV, V.I. SOKOLOV, V.N. GLEBOV, A.M. MALYUTIN, E.V. TROITSKAYA, S.I. MOLCHANOVA, A.S. AHMANOV, V.N. PANCHENKO, V.YU. TIMOSHENKO, D.M. ZHIGUNOV, P.A. FORSH, O.A. SHALYGINA, N.E. MASLOVA, P.K. KASHKAROV
Abstract:
In this study the structural-phase and optical properties of nanocomposites embedded in silicon matrix obtained by thermal deposition of SiOx films with x  1 on silicon, quartz and sapphire substrates were studied. These films were exposed at thermal annealing at different temperatures. Quantitative characterization methods of structural and phase properties of derived samples by the IR and Raman spectroscopy were developed. These methods allow us to determine a composition (stoichiometry) of the investigated nanocomposite materials, as well as to determine amorphous and crystalline volume fractions of silicon nanoclusters. By the percolation theory the structural-phase transformations and associated with them photoluminescence properties of nanocomposite under increasing the annealing temperature were described. The first and second percolation limits of temperature for amorphous and crystalline silicon nanoclusters were evaluated. When these limits are achieved the significant changes of series physical (optical, electrical, electroluminescent) properties of nanocomposites films are expected, and it is demonstrated by the example of photoluminescence properties.
Pages: 3
References
  1.  Zhao J., Green M.A., Wang A. High-efficiency optical emission, detection, and coupling using silicon diodes // Journal of Applied Physics. 2002. V. 92. N. 6. P. 2977-2979.
  2.  Green M.A., Zhao J., Wang A., Trupke T. High-efficiency silicon light emitting diodes //  Physica E. 2003. V. 16. P. 351-358.
  3.  Lazarouk S.K., Jaguirno P.V., Leshok A.A., Borisenko V.E. Reverse biased porous silicon light-emitting diodes for optical intra-chip interconnects // Physica E. 2003. V. 16.
    P. 495 - 498.
  4. Gellos B., Koshida N. Electroluminescence with high and stable quantum efficiency and low threshold voltage from anodically oxidized thin porous silicon diode // Journal of Applied Physics. 2000. V. 88. P. 4319 - 4324.
  5.  Лазарук С.К., Лешок А.А., Лабунов В.А., Борисенко В.Е. Эффективность лавинных светодиодов на основе пористого кремния // Физика и техника полупроводников. 2005. Т. 39. № 1. С. 149 - 152.
  6. Franzo G., Irrera A, Moreira E.C. et al. Electroluminescence of silicon nanocrystals in MOS structures // Applied Physics A: Materials, Science and Processing, 2002. V. 74. P. 1 - 5.
  7. Iacona F., Pacifici D., Irrera A. et al. Electroluminescence at 1.54 mm in Er-doped Si nanoclaster-based devices // Applied Physics Letters. 2002. V. 81. N. 17. P. 3242 - 3244.
  8. Castagna M.E., Coffa S., Monaco M. et al. Si-based materials and devices for light emission in silicon // Physica E. 2003. V. 16. P. 547 - 553.
  9.  Dal Negro L., Cazzanelli M., Daldosso N. et al. Stimulated emission in plasma-enhanced chemical vapour deposited silicon nanocrystals // Physica E. 2003. V. 16. P. 297-308.
  10.  Dal Negro L., Pavesi L., Pucker G. et al. Optical gain in silicon nanocrystals // Optical Materials. 2001. V. 17. P. 41-44.
  11. Toshikiyo K., Fujii M., Hayashi S. Enhanced optical properties of Si nanocrystals in planar microcavity // Physica E. 2003. V. 17. P. 451 - 452.
  12. Pacifici D., Irrera A., Franzo G. et al. Erbium-doped Si nanocrystals: optical properties and electroluminescent devices // Physica E. 2003. V. 16. P. 331-340.
  13. Pavesi L. Routes toward silicon-based lasers // Materials Today. 2005. January. P. 18 - 25.
  14. Zhigunov D.M., Seminogov V.N., Timoshenko V.Yu. et al. Effect of thermal annealing on structure and photoluminescence properties of silicon-rich silicon oxides // Physica E. 2009. V. 41. P. 1006-1009.
  15. Timoshenko V. Yu., Lisachenko M. G., Kamenev B. V. et al. Highly efficient sensitizing of erbium ion luminescence in size-controlled nanocrystalline  superlattice structures // Applied Physics Letters. 2004. V. 84. P. 2512 - 2514.
  16. Тимошенко В.Ю., Шалыгина О.А., Лисаченко М.Г. и др. Люминесценция ионов эрбия в слоях кремниевых нанокристаллов в матрице диоксида кремния при сильном оптическом возбуждении // Физика твердого тела. 2005. Т. 47. C.116 - 119.
  17. Nakamura M., Mochizuki Y., Usami K. et al. Infrared absorption spectra and composition of evaporated silicon oxides () // Solid State Communications. 1984. V. 50. N. 12. P. 1079 - 1081.
  18. Bell R.J., Bird N.E., Dean P // J. Phys. C1, 1968. P. 299.
  19.  Nozaki T., Iwamoto M., Usami K. et al // J. Radioanal. Chem. 1979. V. 52. P. 449.
  20. Лисовский И.П., Индутный И.З., Гненный Б.Н. и др. Фазово-структурные превращения в пленках  в процессе вакуумных термообработок // Физика и техника полупроводников. 2003. Т. 37. С. 98 - 103.
  21. Rinnet H., Vergant M., Burneau A. Evidence of light-emitting amorphous silicon clusters confined in a silicon oxide matrix // Journal of Applied Physics. 2001. V. 89.
    N. 1. P. 237-243.
  22. Шкловский Б.И., Эфрос А.Л. Электронные свойства легированных полупроводников. М.: Наука. 1979. С. 126 - 183.
  23. Голубев В.Г., Давыдов В.Ю., Медведев А.В. и др. Спектры рамановского рассеяния и электропроводность тонких пленок кремния со смешанным аморфно-кристаллическим составом: определение объемной доли нанокристалической фазы // Физика твердого тела. 1997. Т. 39. № 8. C. 1348 - 1353.
  24. Richter H., Wang Z.P., Ley L. The one phonon Raman spectrum in microcrystalline silicon // Solid State Communications. 1981. V. 39. N. 5. P. 625 - 629.
  25. Campbell L.H., Fauchet P.M. The effects of microcrystal size and shape jn the one phonon Raman spectra of crystalline semiconductors // Solid State Communications, 1986. V. 58. N. 10. P. 739-741.
  26. Nesbit L.A. Annealing characterization of Si-rich SiO2 films // Applied Physics Letters. 1985. V. 46. N. 1. P. 38-40.
  27. Iacona F., Bongiorno C., Spinella C. et al. Formation and evolution of luminescent Si nanoclusters produced by thermal annealing of SiOx films // Journal of Applied Physics. 2004. V. 95. P. 3723 - 3732.
  28. Емельянов В.И., Семиногов В.Н. Зависимость доли кристаллической фазы в системе нанокластеров Si в матрице SiO2 от температуры отжига // Письма в ЖТФ. 2006. Т. 32. Вып. 24. С. 18 - 23.
  29. Гайслер С.В., Семенова О.И., Шарафутдинов Р.Г., Колесов Б.А. Анализ рамановских спектров аморфно-нанокристаллических пленок кремния // Физика твердого тела. 2004. т. 46. С. 1484 - 1488.
  30. Bustarred E., Hachicha M.A. Experimental determination of the nanocrystalline volume fraction in silicon thin films from Raman spectroscopy // Applied Physics Letters. 1988. V. 52. N. 20. P. 1675 - 1677.
  31.  Paillard V., Puech P., Laguna M.A., Carles R. Improved one-phonon confinement model for an accurate size determination of silicon nanocrystals // Journal of Applied Physics. 1999. V. 86. N. 4. P. 1921 - 1924.
  32. Voutsas A.T., Hatalis M.K., Boyce J., Chiang A. Raman spectroscopy of amorphous and microcrystalline silicon films deposited by low-pressure chemical vapor deposition // Journal of Applied Physics. 1995. V. 78. N. 12. P. 6999 - 7006.
  33. Tsu R., Gonzalez-Hernandez J., Chao S.S. et al. Critical volume fraction of crystallinity conductivity percolation in phosphorus-doped Si:F:H alloys // Applied Physics Letters. 1982. V. 40. N. 6. P. 534 - 535