Радиотехника
Издательство РАДИОТЕХНИКА

"Издательство Радиотехника":
научно-техническая литература.
Книги, журналы издательств ИПРЖР, РС-ПРЕСС, САЙНС-ПРЕСС


Тел.: +7 (495) 625-9241

::Журналы
::Книги
 

ТЕОРИИ ПАТОГЕНЕЗА ДИАБЕТИЧЕСКОЙ НЕВРОПАТИИ: ВЧЕРА И СЕГОДНЯ

Ключевые слова:

Мустафа Х. Аль-замиль – к.м.н., лечебно-диагностический центр патологий периферической нервной системы, Городская поликлиника № 11 УЗ ЮЗАО г. Москвы


Рассмотрены основные теории патогенеза диабетической неврологии.
Список литературы:
  1. Березов Т.Т.Биологическая химия. М.: Медицина. 1990. С. 544.
  2. Мари Р. Биохимия человека. М.: Мир. 1993. Т. 2. С. 416.
  3. Abdel Aziz M.T.TNF-alpha and homocysteine levels in type 1 diabetes mellitus // East. Mediterr. Health J. 2001. V. 7(4-5). P. 679-88.
  4. Angela E. Heesom Millward, Ann, Demaine, Andrew G.Susceptibility to diabeticneuropathy in patients with insulin dependent diabetes mellitus is associated with a polymorphism at the 5' end of the aldose reductase gene //
    J. Neurol. Neurosurg Psychiatry. 1998. V. 64. P. 213 – 216.
  5. Bekyarova G.Y., Ivanova D.G., Madjova V.H. Molecular mechanisms associating oxidative stress with endothelial dysfunction in the development of various vascular complications in diabetes mellitus // Folia Med. (Plovdiv). 2007. V. 49
    (3-4). P. 13–19.
  6. Bohren K.M., Bullock B., Wermuth B., Gabbay K.H. The aldo-keto reductase superfamily. The cDNAs and deduced amino acid sequences of human aldehyde and aldose reductases // J. Biol. Chem. 1989. V. 264. P. 9547 – 9551.
  7. Bolajoko E.B., Mossanda K.S., Adeniyi F., Akinosun O., Fasanmade A. Antioxidant and oxidative stress status in type 2 diabetes and diabetic foot ulcer // S. Afr. Med. J. 2008. V. 98(8). P. 614-7.
  8. Bottazzo G.F.Organ-specific autoimmunity: a 1986 overview //Immunol. Rev. 1986. Dec. V. 94. P. 137 – 69.
  9. Brussee V., Cunningham F.A., Zochodne D.W.
    Direct insulin signaling of neurons reverses diabetic neuropathy // Diabetes. 2004. V. 53(7).
    P. 1824-30.
  10. Chakrabarti S.C-peptide and retinal microangiopathy in diabetes // Exp. Diabesity Res. 2004. V. 5. P. 91–6.
  11. Donev S.R.Ultrastructural evidence for the presence of a glial sheath investing the islets of Langerhans in the pancreas of mammals // Cell. Tissue Res. 1984. V. 237. P. 343 – 348.
  12. Dutil A.l. Contribution a l’etude de I’arthrite obliterante progressive: et des nbvrita d’origine vasculaire // Arch. Med. Exp. Anat. Pathol. 1893. V. 6. P. 102-120.
  13. Dyck P.J., Karnes J.L., O'Brien C.P. The spatial distribution of fiber loss in diabetic polyneuropathy suggests ischemia // Ann. Neurol. 1986. May. V. 19(5). P. 440 – 9.
  14. Dyck P.J., Thomas P.K., Lambert E.H. Peripheral neuropathy, 2-nd ed. V. 1, 2. Philadelphia: W.B. Saunders. 1984.
  15. Dyck P.J., Zimmerman B.R.,Todd H.V. Nerve glucose, fructose, sorbitol myo-inositol and fiber degenration and regeneration in diabeticneuropathy //N. Engl. J. Med. 1988. V. 319. P. 542 – 548.
  16. Dyck P.J., Lambert E.H., Windenbank A.J. Acute hyperosmolar hyperglycemia causes axonal shrinkage and reduced nerve conduction velocity // Exp. Neurology. 1981. V. 71. P. 507 – 514.
  17. Fagerberg S.E.Diabetic neuropathy, a clinical and histological study on the significance of vascular affections // Acta Med. Scand. 1959. V. 345 (Suppl. 164). P. 1 – 97.
  18. Gabriel C. Theories, types and treatments of diabetic neuropathy // Br. J. Hosp. Med. (Lond). 2008.
    V. 69(10). P. 556 – 61.
  19. Goh S.Y. Clinical review: The role of advanced glycation end products in progression and complications of diabetes // J. Clin. Endocrinol. Metab. 2008. V. 93(4). P. 1143-52.
  20. Gong X., Xie Z., Zuo H. Invivo insulin deficiency as a potential etiology for demyelinating disease // Med. Hypotheses. 2008. Sep. V. 71(3). P. 399 – 403.
  21. GreeneD.A., Lattimer-GreeneS. and Sima A.F. Pathogenesis of diabetic neuropathy: role of altered phosphoinositide metabolism // Crit. Rev. Neurobio. 1989. V.5. P. 143–219.
  22. Gumy L.F., BamptonE.T., TolkovskyA.M.Hyperglycaemia inhibits Schwann cell proliferation and migration and restricts regeneration of axons and Schwann cells from adult murine DRG // Mol. Cell Neurosci. 2008. V. 37(2). P.298 – 311.
  23. Hawthornde J.N. Inositol phospholipid and phosphatidic acid metabolism in response to membrane receptor activation // Proceedings oftheNuttition Society. 1985. V. 4. N. 4. P. 167 – 172.
  24. Hotamisligil G.S.Mechanisms of TNF-alpha-induced insulin resistance // Exp. Clin. Endocrinol. Diabetes. 1999a. V. 107. P. 119 – 25.
  25. Huijberts M.S., Schaper N.C., Schalkwijk C.G. Advanced glycation end products and diabetic foot disease // Diabetes Metab Res Rev. 2008. May-Jun. V. 24, Suppl 1. S. 19 – 24.
  26. Humpert P.M., Papadopoulos G., Schaefer K. sRAGE and esRAGE are not associated with peripheral or autonomic neuropathy in type 2 diabetes // Horm Metab Res. 2007. V. 39(12). P. 899 – 902.
  27. Jaeger C., Allendorfer J., Hatziagelaki E. Persistent GAD 65 antibodies in longstanding IDDM are not associated with residual beta-cell function, neuropathy or HLA-DR status // Horm. Metab. Res. 1997. V. 29. P. 510 – 515.
  28. Jin S.M., Nch C.I., Yang S.L.U., Bae E.J., Shin C.H., Chung H.R. Endothelial dysfunction and microvascular complications in type 1 diabetes mellitus // J. Korean Med. Sci. 2008. Feb. V. 23(1). P. 77 – 82.
  29. Kajita K.Increased platelet aggregation in diabetic patients with microangiopathy despite good glycemic control // Platelets. 2001. Sep. V. 12(6). P. 343 – 51.
  30. Kalani M.The importance of endothelin-1 for microvascular dysfunction in diabetes // Vasc. Health. Risk. Manag. 2008. V. 4(5). P. 1061-8.
  31. Kamiya H. et al.Polyol pathway and protein kinase C activity of rat Schwannoma cells // Diabetes Metab Res Rev. 2003. Mar-Apr. V. 19(2). P. 131-9.
  32. Kenji Uehara.Effects of Polyol Pathway Hyperactivity on Protein Kinase C Activity, Nociceptive Peptide Expression, and Neuronal Structure in Dorsal Root Ganglia in Diabetic Mice // Diabetes. 2004. V. 53. P. 3239 – 3247.
  33. Kobayashi Y., Naruse K., Hamada Y. Human proinsulin C-peptide prevents proliferation of rat aortic smooth muscle cells cultured in high-glucose conditions // Diabetologia. 2005. V. 48. P. 2396–401.
  34. Leong F. Diabetes induced by streptozotocin causes reduced Na−K ATPase in the brain // Neurochemical Research. 1991. V. 16. N. 10. P. 1099 – 1185.
  35. Lorenzi M., Cagliero E., Toledo S. Glucose toxicity for human endothelial cells in culture // Diabetes. 1985. V.34. P.621-627.
  36. Louvet C.A novel myelin P0-specific T cell receptor transgenic mouse develops a fulminant autoimmune peripheral neuropathy // J. Exp. Med. 2009. V. 206(3). P. 507-14.
  37. Malik R.A., Veves A., Masson E.A. Endoneurial capillary abnormalities in mild human diabetic neuropathy // J. Neurol. Neurosurg Psychiatry. 1992. V. 55. P. 557 – 561.
  38. Marchal de Calvi. J: (1884) Recherches sur les Accidents Diabetiques. Paris Cited by Jordon. 1936.
  39. McDevitt H.O. Autoimmune diabetes and its antigenic triggers //Hosp. Pract. (Minneap). 1995. V.30(7). P.55 – 62.
  40. Nakamura J.et al. A protein kinase C-ß–selective inhibitor ameliorates neural dysfunction in streptozotocin-induced diabetic rats //Diabetes. 1999. V.48. P. 2090 – 2095.
  41. Oztürk G., Erdoğan E., Oztürk M., Cengiz N., Him A. Differential analysis of effect of high glucose level in the development of neuropathy in a tissue culture model of diabetes mellitus: role of hyperosmolality // Exp. Clin. Endocrinol Diabetes. 2008. Nov. V. 116(10). P. 582 – 91.
  42. Peter J.D. Hypoxic neuropathy: Does hypoxia play a role in diabetic neuropathy. The 1988 Robert Wartenberg Lecture // Neurology. 1989. V.39. P. 111 – 118.
  43. Price S. Al.Mitogen-activated protein kinase p38 mediates reduced nerve conduction velocity in experimental diabetic neuropathy: interactions with aldose reductase // Diabetes. 2004. V. 53(7). P. 1851 – 6.
  44. Rogers L.C. The use of marrow-derived stem cells to accelerate healing in chronic wounds // Int. Wound. J. 2008. Mar. V. 5(1). P.20-5.
  45. Saravia-Fernandez F. Localization of γ-amino­butyric acid and glutamic acid decarboxylase in the pancreas of the nonobese diabetic mouse // Endocrinology. 1996. V. 137. P. 3497-3506.
  46. Sima A.A., Kamiya H. Is C-peptide replacement the missing link for successful treatment of neurological complications in type 1 diabetes? // Curr. Drug. Targets. 2008. V. 9(1). P. 37-46.
  47. Sima A.A.The heterogeneity of diabetic neuropathy // Front Biosci. 2008. V.13. P.4809-16.
  48. Sivenius K.Aldose reductase gene polymorphisms and peripheral nerve function in patients with type 2 diabetes // Diabetes Care. 2004. V. 27(8). P. 2021-6.
  49. Soley Thrainsdottir. Endoneurial Capillary Abnormalities Presage Deterioration of Glucose Tolerance and Accompany Peripheral Neuropathy in Man // Diabetes. 2003. V. 52. P. 2615-2622.
  50. Song Z.Transgenic mice overexpressing aldose reductase in Schwann cells show more severe nerve conduction velocity deficit and oxidative stress under hyperglycemic stress // Mol. Cell. Neurosci. 2003. V.23(4). P. 638-47.
  51. Taiga Shibata,.Oiso Y., Nakamura.Transplantation of Bone Marrow–Derived Mesenchymal Stem Cells Improves Diabetic Polyneuropathy in Rats // Diabetes. 2008. V. 57. P. 3099-3107. 2008.
  52. Tomlinson D.R., Verkhratsky A., Fernyhough P. Glucose neurotoxicity // Nat. Rev. Neurosci. 2008. V.9(1). P. 36 – 45.
  53. Toth C. RAGE, diabetes, and the nervous system // Curr. Mol. Med. 2007. Dec. V.7(8). P.766-76.
  54. Tremolada G. The therapeutic potential of VEGF inhibition in diabetic microvascular complications // Am. J. Cardiovasc Drugs. 2007. V. 7(6). P. 393 – 8.
  55. Unger J.W. Nerve Growth Factor (NGF) and Diabetic Neuropathy in the Rat: Morphological Investigations of the Sural Nerve, Dorsal Root Ganglion, and Spinal Cord Experimental // Neurology. 1998. V.153. Issue 1. September. P. 23-34.
  56. Vanotti A. Overview on pathophysiology and newer approaches to treatment of peripheral neuropathies // CNS Drugs. 2007. V. 21. Suppl. 1. P. 3-12.
  57. Vinik A.I. Autoimmune mechanisms in the pathogenesis of diabetic neuropathy. Molecular Mechanisms of Endocrine and Organ Specific
    Autoimmunity. Georgetown. Texas: Landes Company. 1998. P. 217 – 251.
  58. Vinik D., Ullal J.  Antibodies to Neuronal Structures: Innocent bystanders or neurotoxins? // Diabetes Care. 2005. V. 28(8). 2067 - 2072. 
  59. Waksman B.H.  Allergic neuritis: an experimental disease of rabbits induced by the injection of peripheral nervous tissue and adjuvants // J. Exp. Med. 1955. V.102. P. 213–236.
  60. Walcher D., Babiak C., Poletek P. C-Peptide induces vascular smooth muscle cell proliferation: involvement of SRC-kinase, phosphatidylinositol 3-kinase, and extracellular signal-regulated kinase 1/2 // Circ. Res. 2006. V. 99. P. 1181–7.
  61. Whiting P.H.Enzymes of myo-Inositol and Inositol Lipid Metabolism in Rats with Streptozotocin-// Induced Diabetes Biochem. J. 1979. V. 179. P. 549-553.
  62. Winer S. utoimmune islet destruction in spontaneous type 1 diabetes is not ß-cell exclusive // Nat. Med. 2003. V. 9. P. 198-205.
  63. Wislet-Gendebien S.Astrocytic and neuronal fate of mesenchymal stem cells expressing nestin // Brain Res. Bull.2005. V. 68. P. 95–102.
  64. Woltman H.W. et al. Pathological changes in the spinal cord and peripheral nerves // Arch. Intern. Med. 1929. V. 44. P. 576 – 603.
  65. Ziegler D.Oxidative stress and antioxidant defense in relation to the severity of diabetic polyneuropathy and cardiovascular autonomic neuropathy // Diabetes Care. 2004. V. 27(9). P. 2178-83.

© Издательство «РАДИОТЕХНИКА», 2004-2017            Тел.: (495) 625-9241                   Designed by [SWAP]Studio