Radiotekhnika
Publishing house Radiotekhnika

"Publishing house Radiotekhnika":
scientific and technical literature.
Books and journals of publishing houses: IPRZHR, RS-PRESS, SCIENCE-PRESS


Тел.: +7 (495) 625-9241

 

Energy-assisted magnetic recording: technologies, materials, perspectives

DOI 10.18127/j20700784-201908-01

Keywords:

V.G. Shadrov – Ph.D. (Phys.-Math.), Leading Research Scientist, Scientific-Practical Materials Research Centre
A.E. Dmitrieva – Junior Research Scientist, Scientific-Practical Materials Research Centre
A.V. Boltushkin – Ph.D. (Phys.-Math.), Leading Research Scientist, Scientific-Practical Materials Research Centre
E-mail: nemtsevich@ifttp.bas-net.by


The technology of energy-assisted magnetic recording, which is based on a short-term decrease in the coercive force of the recording medium below the recording field due to local heating (thermally assisted magnetic recording) or precession of the magnetization vector under the influence of microwave radiation (microwave assisted recording), suggests the possibility of a significant reduction in the average thermostable size grain and increase in surface density of magnetic recording is significantly higher than 1 Tb/inch2.
To analyze the main parameters of magnetic media and magnetic read-write heads for energy-driven magnetic recording, the materials used, as well as alternative magnetic materials and concepts of recording media.
The basic parameters of magnetic media and magnetic heads of thermally assisted and micro-wave assisted recordings, used magnetic materials, as well as alternative materials and concepts of energy-assisted magnetic recording media are analyzed.
The technologies considered allow increasing the surface recording density up to 5 Tb/inch2 on the basis of energy-sensitive recording, and when using a combination of HAMR or MAMR and (bit)structured technologies, up to 10 Tb/inch2 and higher.

References:
  1. Stamps R., Breitkreuts S., Akerman J., Chumak A., Otari Y. et al. The 2014 magnetism roadmap. J. Phys. D.: Appl. Phys. 2014. V. 47. P. 333001-1-28.
  2. Plumer M.L., Cain W.C. New paradigms in magnetic recording. Physics in Canada. 2011. V. 67. P. 25–29.
  3. Chaudhary R., Kansal A. A perspective on the future of the magnetic hard disk drive technology. Int. J. Tech. Res. Appl. 2015. V. 3. P. 63–74.
  4. Wang F., Xu X.-H. Writability issues in high-anisotropy perpendicular magnetic recording media. Chin. Phys. B. 2014. V. 23. P. 036802-1-12.
  5. Hirohata A., Takahashi K. Future perspectives for spintronic devices. J. Phys. D.: Appl. Phys. 2014. V. 47. P. 193001-1-40.
  6. Kryder M.H., Gage E.C., McDaniel T.W. et al. Heat assisted magnetic recording. Proc. IEEE. 2008. V. 96. P. 1810–1835.
  7. Vogler C., Abert C., Bruckner F., Suess D., Praetorius D. Heat-assisted magnetic recording of bit-patterned media beyond 10 Tb/in2. Appl. Phys. Lett. 2016. V. 108. P. 102406-1-6.
  8. Okamoto S., Kikuchi N., Furuta M., Kitakami O., Shimatsu T. Microwave assisted magnetic recording technologies and related physics. J. Phys. D: Appl. Phys. 2015. V. 48. P. 353001-1-18.
  9. Wood R., Williams M., Kavcic A., Miles J. The feasibility of magnetic recording at 10 Tb/inch2 on conventional media. IEEE Trans. Magn. 2009. V. 45. P. 917–923.
  10. Albrecht T.R., Bedau D., Dobisz E. et al. Bit patterned media at 1 Tdot/in2 and beyond. IEEE Trans. Magn. 2013. V. 49. P. 773–778.
  11. Ju G., Peng Y., Chang E.C., Ding Y. et al. High density heat-assisted magnetic recording media and advanced characterization- progress and challenges. IEEE Trans. Magn. 2015. V. 51. P. 3201709-1-9.
  12. Shadrov V.G., Dmitrieva A.E., Boltushkin A.V. Magnitnye sredy dlya termoassistirovannoy magnitnoy zapisi. Uspekhi sovremennoy radioelektroniki. 2017. № 2. S. 62–74. [in Russian]
  13. Gavrila H. Achievements and expected issues in heat assisted magnetic recording. J. Engineer. Sci. Innov. 2017. V. 2. P. 16–26.
  14. Suess D., Vogler C., Abert C., Bruckner F., Windl R., Breth L. Fundamental limits in heat-assisted magnetic recording and methods to overcome it with exchange spring structures. J. Appl. Phys. 2015. V. 117. P. 163913-1-4.
  15. Zhou N., Traverso L.M., Xu X. Power delivery and self-heating in nanoscale near-field transducer for heat-assisted magnetic recording. Nanotechnology. 2015. V. 26. P. 134001-1-7.
  16. Zhou N., Xu X.,Hammack A.T., Stipe B.C., Gao K., Scholz W., Gage E.C. Plasmonic near-field transducer for heat-assisted magnetic recording. Nanophotonics. 2014. V. 3. P. 141–155.
  17. Abadia N., Bello F., Zhong C., Flanigan P. et al. Optical and thermal analysis of the light-heat conversion process employing an antenna-based hybrid plasmonic waveguide for HAMR. Optics Express. 2018. V. 26. P. 1752-1-14.
  18. Ikkawi R., Amos N., Lavrenov A., Krichevsky A. et al. Near-field optical transducer for heat-assisted magnetic recording for beyond-10-Tbit/in2 densities. J. Nano. Optoelectronics. 2008. V. 3. P. 44–54.
  19. Bhargava S., Yablonovitch E. Lowering HAMR near-field transducer temperature via inverse electromagnetic design. IEEE Trans. Magn. 2015. V. 51. P. 3100407-1-7.
  20. Datta A., Xu X. Improved near-field transducer design for heat-assisted magnetic recording. IEEE Trans. Magn. 2016. V. 52. P. 3101306-1-6.
  21. Krishnamurthy V., Ng D. K. T., Cen Z., Xu B., Wang Q. Maximizing the plasmonic near-field transducer efficiency to its limit for HAMR. J. Lightwave Technol. 2016. V. 34. P.1184–1190.
  22. Zhang M., Zhou T., Yuan Z. Analysis of switchable spin-torque oscillator for microwave assisted magnetic recording. Adv. Cond. Matter. Phys. 2015. V. 2015. P. 457456-1-6.
  23. Dumas R. K., Sani S. R., Mohseni S.M. et al. Recent advances in nanocontact spin-torque oscillators. IEEE Trans. Magn. 2014. V. 50. P. 4100107-1-7.
  24. Chen T., Dumas R.K., Eklund A., Muduli P.K. et al. Spin-torque and spin-Hall nano-oscillators. Proc. IEEE. 2016. V. 104. P. 1919-1-24.
  25. Zeng Z., Finocchio G., Jiang H. Spin transfer nano-oscillators. Nanoscale. 2013. V. 5. P. 2219–2213.
  26. Iacocca E., Dürrenfeld P., Heinonen O., Åkerman J., Dumas R.K. Mode-coupling mechanisms in nanocontact spin-torque oscillators. Phys. Rev. B. 2015. V. 91. P. 104405-1-5.
  27. Abreu Araujo F., Belanovsky A.D., Skirdkov P.N. et al. Optimizing magnetodipolar interactions for synchronizing vortex based spin-torque nano-oscillators. Phys. Rev. B. 2015. V. 92. P. 045419-1-4.
  28. Weller D., Mosendz O., Parker G., Pisana S., Santos T.S. L10 FePtX-Y media for heat-assisted magnetic recording. Phys. Stat. Sol. A. 2013. V. 210. P. 1245–1260.
  29. Wu A., Kubota Y., Klemmer T., Rausch T. et al. HAMR areal density demonstration of 1+ Tbpsi on spin- stand. IEEE Trans. Magn. 2013. V. 49. P. 779–782.
  30. Wang X., Gao K., Zhou H., Itagi A., Seigler M., Gage E. HAMR recording limitations and extendibility. IEEE Trans. Magn. 2013. V. 49. P. 696–692.
  31. Weller D., Parker G., Mosendz O., Champion E. et al. A HAMR media technology roadmap to an areal density of 4 Tb/in2. IEEE Trans. Magn. 2014. V. 50. P. 3100108-1-8.
  32. Rausch T., Trantham J.D., Chu A.S., Dakroub H.D. et al. HAMR drive performance and integration challenges. IEEE Trans. Magn. 2013. V. 49. P. 730–733.
  33. Weller D., Parker G., Mosendz O., Lyberatos A., Mitin D., Safonova N.Y., Albrecht M. FePt heat-assisted magnetic recording media. J. Vac. Sci. Technol. B. 2016. V. 34. P. 060801-1-10.
  34. Xu B.X., Liu Z.J., Ji R., Toh Y.T., Hu J.F., Li J.M., Zhang J., Ye K.D., Chia C.W. Thermal issues and their effects on heat-assisted magnetic recording system. J. Appl. Phys. 2012. V. 111. P. 07B701-1-4.
  35. Ho H., Laughlin D.E., Zhu J.-G. Effect of RuAl and TiN underlayers on grain morphology, ordering, and magnetic properties of FePt-SiO thin films. IEEE Tran. Magn. 2013. V. 49. P. 3663–3666.
  36. Yang E., Ratanaphan S., Zhu J.-G., Laughlin D.E. Structure and magnetic properties of L10-FePt thin films on TiN/RuAl underlayers. J. Appl. Phys. 2011. V. 109. P. 07B770-1-3.
  37. Li H. H., Dong K.F., Peng Y.G., Ju G., Chow G.M., Chen J.S. High coercive FePt and FePt-SiNx(001) films with small grain size and narrow opening-up of in-plane hysteresis loop by TiN intermediate layer. J. Appl. Phys. 2011. V. 110. P. 043911-1-4.
  38. Zhang L., Takahashi Y.K., Hono K., Stipe B.C., Juang J.-Y., Grobis M. L10 ordered FePtAg-C granular thin film for thermally assisted magnetic recording media. J. Appl. Phys. 2011. V. 109. P. 07B703-1-4.
  39. Mosendz O., Pisana S., Reiner J.W., Stipe B., Weller D. Ultra-high coercivity small-grain FePt media for thermally assisted recording. J. Appl. Phys. 2012. V. 111. P. 07B729-1-4.
  40. Shiroyama T., Abe T., Hono K. Microstructure and magnetic properties of FePt-MOx granular films. IEEE Trans. Magn. 2013. V. 49. P. 3616–3619.
  41. Gilbert D.A., Wang L.W., Klemmer T.J., Thiele J.U., Lai C.H., Liu K. Tuning magnetic anisotropy in (001) oriented L10 (Fe1−xCux)55Pt45 films. Appl. Phys. Lett. 2013. V. 102. P. 132406-1-4.
  42. Varaprasad B.S., Chen M., Takahashi Y.K., Hono K. L10-ordered FePt-based perpendicular magnetic recording media for heat-assisted magnetic recording. IEEE Trans. Magn. 2013. V. 49. P. 718–721.
  43. Hu J.F., Zhou T.J., Phyoe W.L., Cher K., Shi J.Z. Microstructure control of L10 ordered FePt granular film for HAMR application. IEEE Trans. Magn. 2013. V. 49. P. 3737–3739.
  44. Busyatras W., Warisarn C., Okamoto Y. et al. Utilization of multiple read heads for TMR prediction and correction in bit-patterned media recording. AIP Advances. 2017. V. 7. P. 056501-1-5.
  45. Scheunert G., Heinonen O., Hardeman R., Lapicki A., Gubbins M., Bowman R.M. A review of high magnetic moment thin films for
  46. microscale and nanotechnology applications. Appl. Phys. Rev. 2016. V. 3. P. 011301-1-44.
  47. Shadrov V.G., Dmitrieva A.E., Boltushkin A.V. Magnitnye golovki chteniya-zapisi: materialy, tekhnologii, perspektivy. Uspekhi sovremennoy radioelektroniki. 2018. № 4. S. 3–13. [in Russian]
  48. Kobayashi T., Isowaki Y., Fujiwara Y. Advantages of increasing writing temperature in heat-assisted magnetic recording. J. Magn. Soc. Jpn. 2016. V. 40. P. 28–34.
  49. Vogler C., Abert C., Bruckner F., Suess D. Efficiently reduction transition curvature in heat-assisted magnetic recording with state-of-the-art write heads. J. Phys.: Comp. Phys. 2017. V. 50. P. 54–57.
  50. Hirohata A., Sukegawa H., Yanagihara H., Zutic I., Seki T., Mizukami S., Swaminathan R. Roadmap for emerging materials for spintronic device applications. IEEE Trans. Magn. 2015. V. 51. P. 1–11.
  51. Lalisse A.,Tessier G., Plain J., Baffou G. Plasmonic efficiencies of nanoparticles made of metal nitrides (TiN,ZrN) compared with gold. Sci. Rep. 2016. V. 6. P. 38647-1-10.
  52. Zhou N., Kinzel E.C., Xu X. Nanoscale ridge aperture as near-field transducer for heat-assisted magnetic recording. Appl. Opt. 2011. V. 50. P. G42–G46.
  53. Datta A., Xu X. Comparative study of optical near-field transducers for heat-assisted magnetic recording. Opt. Eng. 2017. V. 56. P. 121906-1-5.
  54. Xiong S. Kim J, Wang Y, Zhang X, Bogy D. A two-stage heating scheme for heat assisted magnetic recording. J. Appl. Phys. 2014. V. 115. P. 17B702-1-3.
  55. Xu B.X., Ji R., Toh Y.T., Hu J.F., Li J.M., Zhang J. Performance benefits from pulsed laser heating in heat assisted magnetic recording. J. Appl. Phys. 2014. V. 115. P. 17B701-1-4.
  56. Scheunert G., Cohen S.R., Kullock R. et al. Grazing-incidence optical magnetic recording with super-resolution. Beilstein J. Nanotechnol. 2017. V. 8. P. 28–37.
  57. Greaves S., Katayama T., Kanai Y., Muraoka H. The dynamics of microwave-assisted magnetic recording. IEEE Trans. Magn. 2015. V. 51. P. 1–7.
  58. Silva T.J., Shaw J.M., Nembach H.T. et al. Head and media challenges for 3 Tb/in2 microwave assisted magnetic reсоrding. IEEE Trans. Magn. 2014. V. 50. P. 1–9.
  59. Greaves S.J., Kanai Y., Muraoka H. Microwave-assisted shingled magnetic recording. IEEE Trans. Magn. 2015. V. 51. P. 1–4.
  60. Sani S., Persson J., Mohseni S., Pogoryelov Y. et al. Mutually synchronized bottom-up multi-nanocontact spintorque oscillators. Nat. Commun. 2013. V. 4. P. 2731–2734.
  61. Locatelli N., Hamadeh A., Araujo F. A., Belanovsky A.D. et al. Efficient synchronization of dipolarly coupled vortex-based spin transfer nano-oscillators. Détails Scientific Reports. 2015. V. 5. P. 17039-1-5.
  62. Erokhin S. , Berkov D. Robust synchronization of an arbitrary number of spin-torque-driven vortex nano-oscillators. Phys. Rev. B. 2014. V. 89. P. 144421-1-4.
  63. Thiele J.-U., Maat S., Fullerton E.E., Robertson J.L. Magnetic and structural properties of FePt-FeRh exchange spring films for thermally assisted magnetic recording media. IEEE Trans. Magn. 2004. V. 40. P. 2537–2539.
  64. Kikitsu A., Kai T., Nagase T., Akiyama J.-I. A concept of exchange-coupled recording medium for heat-assisted magnetic recording. J. Appl.Phys. 2005. V. 97. P. 10P701-1-4.
  65. Muthsam O., Vogler C., Suess D. Noise reduction in heat-assisted magnetic recording of bit-patterned media by optimizing a high/low Tc bilayer structure. J. Appl. Phys. 2017. V. 122. P. 213903-1-7.
  66. Ma B., Wang H., Zhao H., Sun C., Acharya R., Wang J.-P. Structural and magnetic properties of a core-shell type L10 FePt/Fe
  67. exchange coupled nanocomposite with tilted easy axis. J. Appl. Phys. 2011. V. 109. P. 083907-1-5.
  68. Richter H.J., Lyberatos A., Nowak U., Evans R.F.L., Chantrell R.W. The thermodynamic limits of magnetic recording. J. Appl. Phys. 2012. V. 111. P. 033909-1-8.
  69. Suess D., Schrefl T. Breaking the thermally induced write error in heat assisted recording by using low and high Tc materials. Appl. Phys. Lett. 2013. V. 102. P. 162405-1-4.
  70. Amos N., Butler J., Lee B., Shachar M.H. et al. Multilevel-3D bit patterned media with 8 signal levels per nanocolumn. PlosOne. 2012. V. 7. P. e40134-1-7.
  71. Albrecht M., Hu G., Moser A., Hellwig O., Terris B.D. Magnetic dot arrays with multiple storage layers. J. Appl. Phys. 2005. V. 97. P. 103910-1-3.
  72. Winkler G., Suess D., Lee J., Fidler J., Bashir M.A. Microwave-assisted three-dimensional multilayer magnetic recording. J. Appl. Phys. Lett. 2009. V. 94. P. 232501-1-4.
  73. Chen Y.J., Yang H.Z., Leong S.H., Santoso B., Shi J.Z., Xu B.X., Tsai J.W. Heat-assisted recording on bottom layer of dual recording layer perpendicular magnetic recording media for two and half dimensional (2.5 D) magnetic data storage. J. Appl. Phys. 2015. V. 117. P. 17C106-1-4.
  74. Greaves S.J., Kanai Y., Muraoka H. Microwave-assisted magnetic recording on dual-thickness and dual-layer bit patterned media. IEEE Trans. Magn. 2016. V. 51. P. 253756-1-6.
  75. Rivkin K., Benakli M., Tabat N., Yin H. Physical principles of microwave assisted magnetic recording. J. Appl. Phys. 2014. V. 115. P. 214312-1-12.
June 24, 2020
May 29, 2020

© Издательство «РАДИОТЕХНИКА», 2004-2017            Тел.: (495) 625-9241                   Designed by [SWAP]Studio