Radiotekhnika
Publishing house Radiotekhnika

"Publishing house Radiotekhnika":
scientific and technical literature.
Books and journals of publishing houses: IPRZHR, RS-PRESS, SCIENCE-PRESS


Тел.: +7 (495) 625-9241

 

Modern hybrid-integrated autodyne oscillators of microwave and mm-wave ranges and its applications. Part 12. Signals of single-circuit autodynes at strong reflected emission

DOI 10.18127/j20700784-201905-01

Keywords:

V.Ya. Noskov – Dr.Sc. (Eng.), Professor, Ural Federal University
E-mail: noskov@oko-ek.ru
S.M. Smolskiy – Dr.Sc. (Eng.), Professor, National Research University «MPEI»; Deputy Director of the Institute of Radioengineering and Electronics, Moscow Power Engineering Institute
E-mail: smolskiysm@mail.ru
K.A. Ignatkov – Ph.D. (Eng.), Associate Professor, Ural Federal University
E-mail: k.a.ignatkov@gmail.com
A.P. Chupahin – Post-graduate Student, Ural Federal University
E-mail: ccaapp1992@gmail.com


This review generalizes results of investigations of signals characteristics features’ formations which were performed during last years for the practically interesting case of strong reflected signal, when its’ amplitude is commensurable with the amplitude of the proper oscillations. Such a situation can be met in the short-range radar (SRR) systems at small and very small distances to the reflecting object.
The point reflector model was considered as a radar object. The autodyne equivalent circuit is presented by the parallel connection of the single-circuit oscillating system and an active element with negative conductance. The equation system is obtained describing the autodyne signal formation in the vase both weak and strong reflected emission.
At a choice of initial analysis data we take only those from them, which provide the smoothness conditions preservation of response formation. Such the conditions are provided at short ranges to the reflector, where the usually great level of reflected emission is ob-served. The analysis of such a case is fulfilled with involving of numerical methods based on the developed autodyne mathematical model. At the end of this review, as an example of the hybrid-integrated oscillator of the 8mm-range Gunn diode, we describe expe-rimental investigations, which results qualitatively confirm the theoretical conclusions. These main results consist in the following.
From the analysis fulfilled of the dependence of oscillator load conductance upon the phase of the reflection factor we state that the main reason of anharmonic distortions of the autodyne response is the load «nonlinearity». In the case of small signal, when the reflection factor modulus is significantly less than 1, the load variations are practically sinusoidal, and the deterministic role in formation distorted signals belongs to processes related to irregularity of the phase incursion in reflected emission.
As a result of the numerical analysis of the autodyne nonlinear model, it is shown dependences of harmonic coefficients, amplitude levels of harmonic components of the spectrum and the mean values of the autodyne response upon the reflection factor modulus and the distance of the radar object, as well as the inherent autodyne properties. Also, we investigated a behavior of autodyne system feedback parameter depending on the level of the reflected emission and a distance to the radar object. At that, we discovered that at strong reflected emission, the boundary value of the feedback parameter, at which the jumps in the autodyne signal occur, is less than 1.
The reasons of such deviation from the known condition are related with features of the nonlinear behavior of the load reverberation factor. This phenomenon must be considered at calculation of the maximal action range and the dynamic range of the autodyne SRR. Our results are represented as useful for interpretation of autodyne signal formation features and experimental results, at calculations and their optimization of their parameters and characteristics.

References:
  1. Votoropin S.D., Noskov V.Ya., Smol'skij S.M. Sovremennye gibridno-integral'nye avtodinnye generatory mikrovolnovogo i millimetrovogo diapazonov i ih primenenie. Ch. 1. Konstruktorsko-tehnologicheskie dostizheniya. Uspehi sovremennoj radioelektroniki. 2006. № 12. S.3–30. [in Russian]
  2. Votoropin S.D., Noskov V.Ya., Smol'skij S.M. Sovremennye gibridno-integral'nye avtodinnye generatory mikrovolnovogo i millimetrovogo diapazonov i ih primenenie. Ch. 2. Teoreticheskie i eksperimental'nye issledovaniya. Uspehi sovremennoj radioelektroniki. 2007. № 7. S. 3–33. [in Russian]
  3. Votoropin S.D., Noskov V.Ya., Smol'skij S.M. Sovremennye gibridno-integral'nye avtodinnye generatory mikrovolnovogo i millimetrovogo diapazonov i ih primenenie. Ch. 3. Funkcional'nye osobennosti avtodinov. Uspehi sovremennoj radioelektroniki. 2007. № 11. S. 25–49. [in Russian]
  4. Votoropin S.D., Noskov V.Ya., Smol'skij S.M. Sovremennye gibridno-integral'nye avtodinnye generatory mikrovolnovogo i millimetrovogo diapazonov i ih primenenie. Ch. 4. Issledovaniya mnogochastotnyh avtodinov. Uspehi sovremennoj radioelektroniki. 2008. № 5. S. 65–88. [in Russian]
  5. Votoropin S.D., Noskov V.Ya., Smol'skij S.M. Sovremennye gibridno-integral'nye avtodinnye generatory mikrovolnovogo i millimetrovogo diapazonov i ih primenenie. Ch. 5. Issledovaniya avtodinov s chastotnoj modulyaciej. Uspehi sovremennoj radioelektroniki. 2009. № 3. S. 3–50. [in Russian]
  6. Noskov V.Ya., Smol'skij S.M. Sovremennye gibridno-integral'nye avtodinnye generatory mikrovolnovogo imillimetrovogo diapazonov i ih primenenie. Ch. 6. Issledovaniya radioimpul'snyh avtodinov. Uspehi sovremennoj radioelektroniki. 2009. № 6. S. 3–51. [in Russian]
  7. Noskov V.Ya., Ignatkov K.A., Smol'skij S.M. Sovremennye gibridno-integral'nye avtodinnye generatory mikrovolnovogo i millimetrovogo diapazonov i ih primenenie. Ch. 7. Dinamika formirovaniya avtodinnyh i modulyacionnyh harakteristik. Uspehi sovremennoj radioelektroniki. 2013. № 6. S. 3–52. [in Russian]
  8. Noskov V.Ya., Ignatkov K.A., Smol'skij S.M. Sovremennye gibridno-integral'nye avtodinnye generatory mikrovolnovogo i millimetrovogo diapazonov i ih primenenie. Ch. 8. Avtodiny so stabilizaciej chastoty vneshnim vysokodobrotnym rezonatorom. Uspehi sovremennoj radioelektroniki. 2013. № 12. S. 3–42. [in Russian]
  9. Noskov V.Ya., Varavin A.V., Vasil'ev A.C., Ermak G.P., Zakarlyuk N.M., Ignatkov K.A., Smol'skij S.M. Sovremennye gibridno-integral'nye avtodinnye generatory mikrovolnovogo i millimetrovogo diapazonov i ih primenenie. Ch. 9. Radiolokacionnoe primenenie avtodinov. Uspehi sovremennoj radioelektroniki. 2016. № 3. S. 32–86. [in Russian]
  10. Noskov V.Ya., Smol'skij S.M., Ignatkov K.A., Mishin D.Ya., Chupahin A.P. Sovremennye gibridno-integral'nye avtodinnye generatory mikrovolnovogo i millimetrovogo diapazonov i ih primenenie. Ch. 10. Osnovy analiza i rascheta parametrov avtodinov s uchetom shumov. Uspehi sovremennoj radioelektroniki. 2018. № 3. S. 18–52. [in Russian]
  11. Noskov V.Ya., Smol'skij S.M., Ignatkov K.A., Mishin D.Ya., Chupahin A.P. Sovremennye gibridno-integral'nye avtodinnye generatory mikrovolnovogo i millimetrovogo diapazonov i ih primenenie. Ch. 11. Osnovy realizacii avtodinov. Uspehi sovremennoj radioelektroniki. 2019. № 2. S. 5–33. [in Russian]
  12. Atayanc B.A., Davydochkin V.M., Ezerskij V.V., Parshin V.S., Smol'skij S.M. Precizionnye sistemy blizhnej chastotnoj radiolokacii promyshlennogo primeneniya. M.: Radiotehnika. 2012. [in Russian]
  13. Kostenko A.A., Hlopov G.I. Kogerentnye sistemy blizhnej i sverhblizhnej radiolokacii millimetrovogo diapazona. Har'kov: IPC «Kontrast». 2015. [in Russian]
  14. Page C.H., Astin A.V. Survey of Proximity Fuze Development. American Journal of Physics. 1947. V. 15. № 2. P. 95–110.
  15. Alidoost S.A., Sadeghzade R., Fatemi R. Autodyne system with a single antenna. 11th International Radar Symposium (IRS-2010). Vilnius, Lithuania. 2010. V. 2. P. 406–409.
  16. Lazarus M.J., Pantoja FP., Somekh M. ets. New Direction-of-Motion Doppler Detector. Electronics Letters. 1980. V. 16. № 25. P. 953–954.
  17. Votoropin S.D, Zakarlyuk N.M., Noskov V.Ya., Smol'skij S.M. O principial'noj nevozmozhnosti samosinhronizacii avtodina izlucheniem, otrazhennym ot dvizhuschegosya ob'ekta. Izvestiya VUZov. Fizika. 2007. T. 50. № 9. S. 53–59. [in Russian]
  18. Landa P.S. Avtokolebaniya v raspredelennyh sistemah. M.: Nauka. 1983. [in Russian]
  19. Novozhilova Yu.V., Sergeev A.S. Parametricheskaya neustojchivost' v avtogeneratore s otrazheniem ot udalennoj nagruzki. 19–ya Mezhdunar. Krymskaya mikrovolnovaya konf. «SVCh-tehnika i telekommunikacionnye tehnologii». Sevastopol': Veber. 2009. S. 675–676. [in Russian]
  20. Damgov V.N., Landa P.S., Perminov S.M., Shatalova G.G. Stohasticheckie kolebaniya v generatore s dopolnitel'noj obratnoj svyaz'yu. Radiotehnika i elektronika. 1986. T. 31. № 4. S. 730–733. [in Russian]
  21. Kuznecov S.P. Dinamicheskij haos. M.: Fizmatlit. 2001. [in Russian]
  22. Buzykin V.T., Noskov V.Ya. Avtodinnyj otklik pri sil'nom otrazhennom signale. Primenenie radiovoln millimetrovogo i submillimetrovogo diapazonov. Har'kov: IRE AN Ukrainy. 1992. S. 52–56. [in Russian]
  23. Noskov V.Ya., Smol'skij S.M. Registraciya avtodinnogo signala v cepi pitaniya generatorov na poluprovodnikovyh diodah SVCh (Obzor). Tehnika i pribory SVCh. 2009. № 1. S. 14–26. [in Russian]
  24. Kasatkin L.V., Chajka V.E. Poluprovodnikovye ustrojstva diapazona millimetrovyh voln. Sevastopol': Veber. 2006. [in Russian]
  25. Noskov V.Ya., Ignatkov K.A., Smol'skij S.M. Rol' variacij nagruzki v formirovanii avtodinnogo otklika SVCh generatorov pri sil'nom otrazhennom signale. Radiotehnicheskie tetradi. M.: MEI. 2011. № 46. S. 33–36. [in Russian]
  26. Noskov V.Ya., Ignatkov K.A., Smol'skij S.M. Zavisimost' avtodinnyh harakteristik ot vnutrennih parametrov SVCh generatorov. Radiotehnika. 2012. № 6. S. 24–42. [in Russian]
  27. Noskov V.Ya., Ignatkov K.A. Chupahin A.P. The Influence of Load Variations on the of Autodyne Response Formation in Microwave Oscillators under Strong Reflected Emission. Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT). Yekaterinburg. 2018. RE16. P. 1–4.
  28. Noskov V.Ya., Ignatkov K.A., Smol'skij S.M. Harakteristiki odnokonturnyh SVCh generatorov pri sil'nom otrazhennom signale. Radiotehnicheskie tetradi. M.: MEI. 2011. № 46. S. 37–41. [in Russian]
  29. Noskov V.Ya., Ignatkov K.A., Chupahin A.P. Mathematical Modeling of the Autodyne Signal Characteristics at Strong Reflected Emission. 3rd International Workshop on Radio Electronics & Information Technologies (REIT-2018 Spring). Yekaterinburg. 2018. P. 103–112.
  30. Noskov V.Ya., Ignatkov K.A., Smol'skij S.M. Eksperimental'nye issledovaniya avtodinnyh modulej na mezaplanarnyh diodah Ganna KVCh diapazona. Elektronnaya tehnika. Ser. 1. SVCh-tehnika. 2012. № 2 (513). S. 17–36. [in Russian]
  31. Lasarus M.J., Somekh M.G., Novak S., Pantoja F.R. Directional Harmonics in Doppler Effect. Electronics Letters. 1981. V. 17. № 2. P. 94–96.
  32. Lazarus M.J., Phil D., Pantoja F.R., Novak S., Somekh M.G. Sensitivity to Direction of Motion of a Self-Oscillating-Mixer Doppler Radar. IEE Proceedings F - Communications, Radar and Signal Processing. 1982. V. 129. № 4. P. 233–240.

© Издательство «РАДИОТЕХНИКА», 2004-2017            Тел.: (495) 625-9241                   Designed by [SWAP]Studio