Radiotekhnika
Publishing house Radiotekhnika

"Publishing house Radiotekhnika":
scientific and technical literature.
Books and journals of publishing houses: IPRZHR, RS-PRESS, SCIENCE-PRESS


Тел.: +7 (495) 625-9241

 

Investigation of the durability of a solid lubricating coating based on molybdenum disulphide to fretting wear under conditions of vibration loading

DOI 10.18127/j19998465-201902-06

Keywords:

E.V. Rykov – Head of Sector of Land-based Systems Design, Kaluga branch of Lavochkin Research and Production Association
E-mail: rik@laspace.ru
A.O. Shtokal – Ph.D.(Eng.), Leading Designer, Sector of Land-based Systems Design, Kaluga branch of Lavochkin Research and Production Association
E-mail: cuauthemoc1@yandex.ru
T.A. Govorun – Design Engineer of the 3rd category, Sector of Land-based Systems Design, Kaluga branch of Lavochkin Research and Production Association; Post-graduate Student, Kaluga branch of the Bauman MSTU
E-mail: Glancet@yandex.ru
V.K. Shatalov – Dr.Sc.(Eng.), Professor, Head of Department М5-КF «Materials Science and Chemistry», Kaluga branch of the Bauman MSTU
E-mail: vkshatalov@yandex.ru
K.B. Dobrosovestnov – Head of Sector of Unfailing Performance, Reliability, Integrity and Ergonomic Management, Kaluga branch of Lavochkin Research and Production Association
E-mail: dkb@laspace.ru
O.P. Bazhenova – Head of Sector of Experimental Development and Introduction of Advanced Materials № 574-1, Kaluga branch of Lavochkin Research and Production Association
E-mail: bazhenova_laspace@mail.ru


When the spacecraft (SC) is brought into a near-earth orbit, vibration and shock loads act on it. At the stage of injection into the cal-culated orbit, vibrations can cause intensive destruction of the surfaces of the contacting parts. This phenomenon is called fretting. To avoid adhesion, protective coatings are covered on the contacting surfaces of the parts. With the destruction of protective coatings and prolonged exposure to vacuum, cold welding may occur, so special attention should be paid to the selection of protective coatings that retain their properties during the transportation of the SC.
The use of solid lubricating coatings (SLC) based on molybdenum disulfide like VNII NP-320 (foreign analogue is Vespel SP3) is an established design solution for preventing cold welding of contacting surfaces of the SC mechanisms parts made of steel 20Х13 and titanium alloy ВТ6.
As a result of the experiment on modeling of vibrational loads during the transportation of the SC to the target orbit is established that: SLC VNII NP-320 based on molybdenum disulfide with a thickness of 15 μm is erased to the full thickness in the investigated design model as a result of fretting wear arising when the SC is transported by a carrier rocket to the target orbit; after erasing in the process of fretting wear of the SLC, the components of the titanium alloy ВТ6, from which the pan is made, «stick» on the surface of the thrust of steel 20Х13; when using a SLC based on molybdenum disulphide in a contacting steel-titanium pair, there is a possibility of adhesion of the contacting surfaces of the SC mechanisms parts in the course of a prolonged subjection in outer space conditions in a locked state.
The problem described above is poorly explored for domestic cosmonautics. The constant increase in the complexity of the SC me-chanisms, as well as a number of failures that occurred during the operation of the SC, make it necessary to seek new design solutions. A promising direction of excluding adhesion of contacting surfaces of SC mechanisms is the formation of ceramic coatings on these surfaces. In further studies it is necessary to experimentally confirm the preservation and absence of damage of ceramic surfaces to their entire thickness under the influence of fretting wear and loads arising during the transportation of SC in order to ensure that the contacting surfaces are not welded and the SC mechanisms will be functional under long-term exposure in outer space conditions in a locked state.

References:
  1. Malenkov M.I., Karatushin S.I., Tarasov V.M. Konstruktsionnye i smazochnye materialy kosmicheskikh mekhanizmov: Ucheb. posobie. SPb.: Balt. gos. tekhn. un-t. 2007. 54 s. (In Russian).
  2. Govorun T.A., Shatalov V.K., Shtokal A.O., Rykov E.V., Dobrosovestnov K.B., Bazhenova O.P., Bogachev V.A. Metody predotvrashcheniya kholodnoy svarki kontaktiruyushchikh poverkhnostey uzlov raskrytiya kosmicheskikh apparatov pri dlitel’nom nakhozhdenii na tselevoy orbite. Materialy regional’noy nauchno-tekhnich. konf. «Naukoemkie tekhnologii v priboro- i mashinostroenii i razvitie innovatsionnoy deyatel’nosti v vuze». 18−20 aprelya 2017. Kaluga: Izd-vo MGTU im. N.E. Baumana. 2017. T. 1. S. 28−33. (In Russian).
  3. Mezenin N.A. Zanimatel’no o zheleze. M.: Metallurgiya. 1972. S. 117−119. (In Russian).
  4. KHopin P.N. Otsenka rabotosposobnosti par treniya s tverdosmazochnymi pokrytiyami v usloviyakh vakuuma. Vestnik NPO im. S.A. Lavochkina. 2016. № 2. S. 85−90. (In Russian).
  5. Shtokal A.O., Rykov E.V., Golovacheva Yu.G., Govorun T.A. Ispytanie iznosostoykosti detaley zapornoy armatury v agressivnoy srede. Glavnyy mekhanik. 2016. № 11. S. 32−39. (In Russian).
  6. Zhevtun I.G., Gordienko P.S., Mashtalyar D.V., Puz’ A.V., Yudakov A.A. Antifriktsionnye svoystva karbidsoderzhashchego sloya na titanovom splave VT1-0. Elektronnaya obrabotka materialov. 2015. T. 51. № 1. S. 114−117. (In Russian).
  7. Merstallinger A., Sales M., Semerad E., Dunn B.D. Assessment of Cold Welding between Separable Contact Surfaces due to Impact and Fretting under Vacuum. ESA STM-279. ESA Communication Production Office. November 2009. 57 p.
  8. Sorokin L.N., Korotin A.A. Uvelichenie srokov aktivnogo sushchestvovaniya kosmicheskikh apparatov monitoringa i prognozirovaniya chrezvychaynykh situatsiy. Sb. nauchnykh trudov VI Vseros. nauchno-praktich. konf. «Bezopasnost’ v chrezvychaynykh situatsiyakh». SPb.: Izd-vo Politekhn. un-ta. 2014. S. 159−164. (In Russian).
  9. Semkin N.D., Telegin A.M., Kalaev M.P. Kosmicheskoe prostranstvo i ego vliyanie na elementy konstruktsiy kosmicheskikh apparatov: elektron. metod. posobie k prakt. rabotam. Samara: Samarskiy gos. aerokosmicheskiy un-t. 2013. 46 s. (In Russian).
  10. Starinova O.L., KHabibullin R.M. Proektnaya model’ malogo meteorologicheskogo kosmicheskogo apparata s solnechnym parusom. Izvestiya Samarskogo nauchnogo tsentra RAN. 2015. T. 17. № 2. S. 143−150. (In Russian).
  11. Gorovtsov V.V., Zhiryakov A.V., Telepnev P.P., Petrov Yu.A., Bernikov A.S. Issledovanie dinamiki i reshenie zadachi proektirovaniya transformiruemykh konstruktsiy posadochnogo modulya KA «EKZOMARS». Vestnik NPO im. S.A. Lavochkina. 2016. № 4. S. 75−80. (In Russian).
  12. Martynov M.B., Merkulov P.V., Lomakin I.V., Vyatlev P.A., Simonov A.V., Leun E.V., Barabanov A.A., Nasyrov A.F. Perspektivnyy rossiyskiy proekt «LAPLAS-P» dlya issledovaniy planetnoy sistemy Yupitera: tseli nauchnoy missii i ee osobennosti. Skhema poleta. Vestnik NPO im. S.A. Lavochkina. 2016. № 2. S. 3−10. (In Russian).
  13. Forward Robert L. A Program for Interstellar Exploration. Journal of the British Interplanetary Society. 1976. V. 29. P. 611−632.
  14. Wimmer-Schweingruber R.F., McNutt R., Fahr H., Fichtner H., Heber B., Mall U. etc.: the IHP/HEX Team The interstellar heliopause probe: Heliospheric boundary explorer mission to the interstellar medium. Earth, Moon and Planets. 2009. V. 104. № 1−4. P. 17−24. DOI: 10.1007/s11038-008-9249-8.
  15. Pattee H.E., Monroe R.E. Adhesion in the space environment. Battelle Memorial Institute Columbus Laboratories. 1966. 137 p.
  16. Johnson M.R. The Galileo High Gain Antenna Deployment Anomaly. NASA Jet Propulsion Laboratory. 1994. 20 p.
  17. Lyushinskiy A.V. Diffuzionnaya svarka raznorodnykh materialov: Ucheb. posobie dlya studentov vuzov. M.: Akademiya. 2006. 42 s. (In Russian).
  18. Shatalov V.K., Lysenko L.V., Minaev A.N., Sulina O.V., Shtokal A.O. Sposoby mikrodugovogo oksidirovaniya poverkhnostey detaley iz titanovykh splavov [Elektronnyy resurs]. Nauka i obrazovanie. 2013. № 7. S. 1−18. DOI: 10.7463/0713.0583316. URL = http://technomag.bmstu.ru/doc/583316.html (data obrashcheniya: 19.06.2017). (In Russian).
  19. Shatalov V.K., Shtokal A.O., Rykov E.V., Dobrosovestnov K.B. Primenenie metodov mikrodugovogo oksidirovaniya pri sozdanii konstruktivnykh elementov kosmicheskikh apparatov [Elektronnyy resurs]. Nauka i obrazovanie. 2014. № 6. S. 183−192. DOI: 10.7463/0614.0712840. URL = http://technomag.bmstu.ru/doc/712840.html (data obrashcheniya: 19.06.2017). (In Russian).
  20. Shtokal A.O., Rykov E.V., Dobrosovestnov K.B., Govorun T.A., Bazhenova O.P., Rozhkova T.V. Mnogofunktsional’nyy metod izgotovleniya pretsizionnykh uzlov kosmicheskogo teleskopa. Elektromagnitnye volny i elektronnye sistemy. 2016. T. 21. № 1. S. 27−41. (In Russian).

© Издательство «РАДИОТЕХНИКА», 2004-2017            Тел.: (495) 625-9241                   Designed by [SWAP]Studio