Publishing house Radiotekhnika

"Publishing house Radiotekhnika":
scientific and technical literature.
Books and journals of publishing houses: IPRZHR, RS-PRESS, SCIENCE-PRESS

Тел.: +7 (495) 625-9241


Testing of thermal housing layout of AFA transceiver module with built-in cooling channels manufactured using SLM technology

DOI 10.18127/j00338486-201904-09


D.I. Tokmakov – Leading Design Engineer, PJSC «Radiofizika» (Moscow); Senior Lecturer, Moscow Aviation Institute (National Research University)
Yu.O. Solyaev – Ph.D.(Phys.-Math.), Associate Professor, Moscow Aviation Institute (National Research University); Senior Research Scientist, Institute of Applied Mechanics (Moscow)
N.A. Sgadova – Head of Sector, PJSC «Radiofizika» (Moscow)
D.L. Ventsenostsev – Head of Department, PJSC «Radiofizika» (Moscow)
R.V. Goryunov – Design Engineer of the 1st category, PJSC «Radiofizika» (Moscow); Senior Lecturer, Moscow Aviation Institute (National Research University)
L.N. Rabinsky – Dr.Sc.(Phys.-Math.), Professor, Director of Institute №9, Moscow Aviation Institute (National Research University)

The article is devoted to testing the thermal layout. The thermal layout includes an SLM-made body and thermal simulators. The article provides a thermal and hydraulic layout calculation. According to the results of the calculation, a graph of hydraulic losses and a table of temperature values at the control points depending on the flow rate of the coolant were obtained. Marked control points of measurement. It is given а brief description of the developed installation for testing. In the process of testing, the flow rate and tem-perature of thermal simulators were measured. Based on the measurement results, a table of the measured temperature versus the flow rate was compiled and a graph comparing the calculated and experimental values. Аanalyzing the results revealed a deviation from the calculated values of no more than 5%. Also proposed a form of pins inside the cooling channel to increase the area of the heat sink and reduce the hydraulic resistance. According to the results of calculations and tests, it can be said that the use of additive technologies for the production of shells and cooled bases of this kind is promising and justified from a technical point of view.

  1. Dobryanskiй V.N., Rabinskiй L.N., Radchenko V.P., Solyaev Yu.O. Otsenka shiriny zony kontakta mezhdu ploskoovalnymi kanalami okhlazhdeniya i korpusom priёmo-peredayushchego modulya aktivnoй fazirovannoй antennoй reshёtki. Trudy MAI (Elektronnyй zhurnal). 2018. № 101.
  2. Babaйtsev A.V., Rabinskiй L.N., Radchenko V.P., Ventsenostsev D.L. Otsenka prochnosti i vybor optimalnoй formy poperechnogo secheniya tonkostennykh metallicheskikh trubok sistemy okhlazhdeniya AFAR. Tekhnologiya metallov. 2017. № 10. S. 38−46.
  3. Babaйtsev A.V., Ventsenostsev D.L., Rabinskiй L.N., Radchenko V.P. Otsenka teplovykh rezhimov priemoperedayushchego modulya aktivnoй fazirovannoй antennoй reshetki. Izvestiya Tulskogo gosudarstvennogo universiteta. Tekhnicheskie nauki. 2017. № 9−1. S. 365−374.
  4. Kakhramanov R.M., Knyazeva A.G., Rabinskiy L.N., Solyaev Y.O. On the possibility of steady-state solutions application to describe a thermal state of parts fabricated by selective laser sintering. High Temperature. 2017. 55(5). P. 731−736.
  5. Tokmakov D.I. Problemy sozdaniya sistemy okhlazhdeniya aktivnoй fazirovannoй antennoй reshetki santimetrovogo diapazona. Trudy MAI (Elektronnyй zhurnal). № 68.
  6. Wang L. Multiobjective Optimization Method for Multichannel Microwave Components of Active Phased Array Antenna. Mathematical Problems in Engineering. 2016. T. 2016. P. 1−7.
  7. Zhang Wenxing, Wu Qiang, Zhao Shuwei. Thermal Design Of T/R Modules In Airborne Phased Array Antenna. 2nd Joint International Information Technology, Mechanical and Electronic Engineering Conference (JIMEC). 2017. P. 415−418.
  8. Parlak M., McGlen R.J. Cooling of high power active phased array antenna using axially grooved heat pipe for a space application. 7th IEEE International Conference on Recent Advances in Space Technologies (RAST). 2015. P. 743−748.
  9. Lomakin E., Rabinskiy L., Radchenko V. et al. Analytical estimates of the contact zone area for a pressurized flat-oval cylindrical shell placed between two parallel rigid plates. Meccanica. 2018. V. 53. № 15. P. 3831−3838.
  10. Qian S. et al. Topology optimization of fluid flow channel in cold plate for active phased array antenna. Structural and Multidisciplinary Optimization. 2018. V. 57. № 6. P. 2223−2232.
  11. Radchenko V.P. Modelirovanie napryazhenno-deformirovannogo sostoyaniya tonkostennykh elementov konstruktsii sistem termoregulirovaniya radiolokatsionnykh stantsii. Diss … kand. tekhn. nauk: 01.02.06. Zashchishchena 26.12.2018. M.: 2018. 130 s. Bibliogr.: S. 113−120.
  12. Norfolk M., Johnson H. Solid-state additive manufacturing for heat exchangers. JOM. 2015. V. 67. № 3. P. 655−659.
  13. Williams N. Conformal cooling: How AM is increasing efficiency and quality in the injection moulding industry. Metal Additive Manufacturing. 2018. V. 4. № 3. P. 137−143.
  14. Olakanmi E.O., Cochrane R.F., Dalgarno K.W. A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties. Progress in Materials Science. 2015. V. 74. P. 401−477.
  15. Babaytsev A.V., Prokofiev M.V., Rabinskiy L.N. Mechanical properties and microstructure of stainless steel manufactured by selective laser sintering. Nanoscience and Technology (International Journal). 2017. V. 8. № 4. P. 359−366.

© Издательство «РАДИОТЕХНИКА», 2004-2017            Тел.: (495) 625-9241                   Designed by [SWAP]Studio