Radiotekhnika
Publishing house Radiotekhnika

"Publishing house Radiotekhnika":
scientific and technical literature.
Books and journals of publishing houses: IPRZHR, RS-PRESS, SCIENCE-PRESS


Тел.: +7 (495) 625-9241

 

Range-Doppler coupling compensation algorithms for tracking filter

DOI 10.18127/j00338486-201904-01

Keywords:

M.A. Murzova – Post-graduate Student, Moscow Institute of Physics and Technology (State University); Engineer, PJSC «Radiofizika» (Moscow)
E-mail: mariya.trofimenko@phystech.edu
V.E. Farber – Dr.Sc.(Eng.), Professor, Head of Department, PJSC «Radiofizika» (Moscow); Professor, Moscow Institute of Physics and Technology (State University)
E-mail: vladeffar@mail.ru


The use of LFM waveforms results in that the range measurements of moving objects are biased due to the range-Doppler coupling in the signal. Thus, in developing tracking filter it is necessary to take into account the range-Doppler coupling.
In this paper, the features of a tracking filter using linear frequency modulated (LFM) waveforms are studied. An interrelation of first-order polynomial filters (two-state Kalman filter, diffusion filter, α-β filter) estimating true and biased range of moving objects is ana-lyzed. The diffusion filter is defined as a two-state Kalman filter with introduction of additional term into correlation matrix of extrapo-lation errors. The additional term is a diagonal matrix having diffusion coefficients as the matrix elements. The expressions of diffusion coefficients are derived. The tracking accuracies of diffusion filter in steady state are the same as tracking accuracies of fixed memory least squares filter (or growing-memory filter at n = N). The gains of α-β filter at which tracking accuracies of this filter in steady state are the same as tracking accuracies of fixed memory least squares filter are derived. Also a performance comparison of first-order polynomial filters estimating true and biased range of moving objects is studied. An initial state estimate and error covariance matrix are derived from two measurements with the LFM waveform. The increase of difference between two range-Doppler coupling coefficients corresponding with these measurements improves the initial variance of range rate estimation. Besides that at the negative range-Doppler coupling coefficient the variance of extrapolated range of filter estimating true range is better than the variance of extrapolated range of filter estimating biased range.

References:
  1. Li R. Optimalnye otsenki, opredelenie kharakteristik i upravlenie. M.: Nauka. 1966.
  2. Mekhra R.K. Sravnenie neskolkikh nelineinykh filtrov dlya sistemy slezheniya za vkhodyashchimi v atmosferu letatelnymi apparatami. Voprosy raketnoi tekhniki. 1973. № 1. S. 3−23.
  3. Shirman Ya.D., Manzhos V.N. Teoriya i tekhnika obrabotki radiolokatsionnoi informatsii na fone pomekh. M.: Radio i svyaz. 1981.
  4. Fitzgerald R.J. Effect of Range-Doppler Coupling on Chirp Radar Tracking Accuracy. IEEE Transactions on Aerospace and Electronic Systems. 1974. V. AES-10. № 4. P. 528−532.
  5. Farber V.E. Analiz kharakteristik algoritmov opredeleniya parametrov dvizheniya kosmicheskikh apparatov po informatsii radiolokatsionnykh sredstv, ispolzuyushchikh zondiruyushchie signaly s lineinoi chastotnoi modulyatsiei. Kosmicheskie issledovaniya. 1995. T. 33. № 1. S. 31−35.
  6. Trofimenko M.A., Farber V.E. Otsenka vliyaniya nalichiya skorostnoi oshibki pri izmereniyakh dalnosti v RLS s LChM-signalom na granitsy ustoichivosti algoritmov otsenki dalnosti i radialnoi skorosti. Radiotekhnika. 2015. № 10. S. 7−16.
  7. Trofimenko M.A., Farber V.E. Otsenka vliyaniya skorostnoi oshibki na ustoichivost filtrov vtorogo poryadka // Radiotekhnika. 2016. № 4. S. 5−17.
  8. Trofimenko M.A., Farber V.E. Otsenka vliyaniya skorostnogo smeshcheniya v radiolokatsionnykh stantsiyakh s LChM-signalom na granitsy ustoichivosti soprovozhdeniya vkhodyashchikh v atmosferu kosmicheskikh obieektov. Trudy MFTI. 2015. T. 7. № 2. S. 156−166.
  9. Trofimenko M.A., Farber V.E. Influence of range-Doppler coupling on the tracking stability of reentering space objects. IEEE International Conference on Engineering and Telecommunication. 2015. P. 40−44.
  10. Murzova M.A., Farber V.E. Skhodimost α-β filtra dlya razlichnykh znachenii koeffitsientov skorostnogo smeshcheniya. Radiotekhnika. 2018. № 10. S. 5−17.
  11. Murzova M.A., Farber V.E. The α-β Filter for Tracking Maneuvering Objects with LFM Waveforms. IEEE IVth International Conference on Engineering and Telecommunication. 2017. P. 104−107.
  12. Murzova M.A. Otsenka vliyaniya skorostnoi oshibki po dalnosti na tochnostnye kharakteristiki filtra pervogo poryadka. Materialy XI Vseros. nauchno-tekhnich. konf. «Radiolokatsiya i radiosvyaz». 2017. S. 57−61.
  13. Murzova M.A., Farber V.E. Vybor koeffitsientov sglazhivaniya α-β filtra po kriteriyu minimuma dispersii summarnoi oshibki dlya RLS s LChM-signalom. Radiotekhnika. 2018. № 4. S. 5−16.
  14. Jain V., Blair W.D. Filter Design for Steady-State Tracking of Maneuvering Targets with LFM Waveforms. IEEE Transactions on Aerospace and Electronic Systems. 2009. V. 45. № 2. P. 765−773.
  15. Saho K. Steady-State Performance Analysis of Tracking Filter Using LFM Waveforms and Range-Rate Measurement. Mathematical Problems in Engineering. 2018.
  16. Murzova M.A., Farber V.E. Analiz atmosfernogo filtra, adaptirovannogo k nalichiyu skorostnoi oshibki po dalnosti. Radiotekhnika. 2017. № 4. S. 5−14.
  17. Wong W., Blair W.D. Steady-state tracking with LFM waveforms. IEEE Transactions on Aerospace and Electronic Systems. 2000. V. 36. № 2. P. 701−709.
  18. Volochkov E.B. Izmerenie dalnosti LChM signalom pri neizvestnoi doplerovskoi chastote. Radiotekhnika. 1991. № 11. S. 17−19.
  19. Ryabova-Oreshkova A.P. Filtry s effektivnoi konechnoi pamyatyu, realizuemye na TsVM posredstvom rekurrentnykh formul. Izv. AN SSSR. Tekhnicheskaya kibernetika. 1969. № 4.
  20. Tuzlukov V. Signal processing in radar systems. Tailor & Francis Group. 2013.
  21. Farber V.E. Osnovy traektornoi obrabotki radiolokatsionnoi informatsii v mnogokanalnykh RLS: Ucheb. posobie. M.: MFTI. 2005.
  22. Kuzmin S.Z. Osnovy proektirovaniya sistem tsifrovoi obrabotki radiolokatsionnoi informatsii. M.: Sov. radio. 1986.
  23. Eli Brookner. Tracking and Kalman Filtering Made Easy. John Wiley & Sons, Inc. 1998.
May 29, 2020

© Издательство «РАДИОТЕХНИКА», 2004-2017            Тел.: (495) 625-9241                   Designed by [SWAP]Studio