Radiotekhnika
Publishing house Radiotekhnika

"Publishing house Radiotekhnika":
scientific and technical literature.
Books and journals of publishing houses: IPRZHR, RS-PRESS, SCIENCE-PRESS


Тел.: +7 (495) 625-9241

 

Efficient computational algorithm for calculating the electrical characteristics of nanoscale heterostructures based on the formalism of Landauer-Buttiker

DOI 10.18127/j22250980-201901-05

Keywords:

V.D. Shashurin – Dr.Sc. (Eng.), Professor, Head of the Department “Technology of instrumentation”, Bauman Mos-cow State Technical University (National Research University)
E-mail: schashurin@bmstu.ru
N.A. Vetrova – Ph.D. (Eng.), Associate Professor, Department “Technology of instrumentation”, Bauman Moscow State Technical University (National Research University)
E-mail: vetrova@bmstu.ru
K.P. Pchelintsev – Assistant, Department “Technology of instrumentation”, Bauman Moscow State Technical University (National Research University)
E-mail: pkp@bmstu.ru
E.V. Kuimov – Post-graduate Student, Department “Technology of instrumentation” Bauman Moscow State Technical University (National Research University)
E-mail: ekjmo@mail.ru
A.A. Koziy – Student, Bauman Moscow State Technical University (National Research University)
E-mail: a.koziy98@gmail.com


In the design of modern electronic devices based on nanoscale semiconductor structures an important task is to predict their operating parameters, taking into account technological factors and gerontological processes.On the one hand, such devices have attractive, as it was previously thought – unattainable due to the "fundamental physical limit" – properties that allow them to be attributed to the class of ultra-fast devices.On the other hand, the capabilities of the modern quantum-mechanical device allow to develop effective models of current transfer in channels of low-dimensional structures and, as a result, not only to predict the electrical properties of devices based on them, but also to design optimal devices according to the criterion of complex indicators that take into account the functional parameters and indicators of their reliability even in hard conditions.The most important advantage of modern ultra-fast electronics devices based on low – dimensional heterostructures, which allows to develop such optimization models, is "an additional degree of freedom" for the control of quantum mechanical effects in the structures of its topological and stoichiometric parameters.However, despite the high practical orientation of such models, the problem of widespread implementation and commercialization of software systems for the design and technological optimization of nanoelectronic devices on semiconductor heterostructures due to the complexity of algorithms and the task of improving their performance is extremely important. For example, the calculation of the current-voltage characteristic for a given topology of a heterostructure is a complex multi-iterative problem, the speed of which is significantly affected by the speed of the most frequently executed program blocks that solve various subtasks. The results on the development and implementation of an optimal from the point of view of resource intensity of the model is shown in the present work authors.
The presented mathematical model is developed on the basis of the numerical method of calculating the transparency block, taking into account the time complexity of the various ways of its implementation, has a time complexity O(2n*m) and provides a gain in performance of about 50% compared to the model based on the widely used to date conditional analytical method of transfer matrices. As a solution to the problem of reducing the order of accuracy of the finite-difference scheme, it is proposed to use a special kind of approximation based on the Integro-interpolation method. In order to minimize the operating time of the numerical model for calculating transparency, it is proposed to use sparse matrices as a basis for the formation of SLAE, the solution of which is carried out by the LU – decomposition method. Based on the results of verification and validation of the developed model, it is concluded that the efficiency of the algorithm is improved while maintaining the accuracy of forecasting the current-voltage characteristics of the device.

References:
  1. Ivanov YU.A., Meshkov S.A., Vetrova N.A. i dr. Issledovaniya degradacii rezonansno-tunnel'nyh diodov na baze AlAs/GaAs nanogeterostruktur // Inzhenernyj zhurnal: nauka i innovacii. 2013. № 6 (18). URL: http://engjournal.ru/catalog/nano/hidden/811.html (data obrashcheniya: 22.02.2019).
  2. Vetrova N.A., Gudkov A.G., Shashurin V.D., Naraikin O.S. Technological Optimization of Devices for Safe Storage of Platelet-Containing Transfusion Media // Biomedical Engineering. 2017. V. 51(4). № 1–4 November. P. 18–21.
  3. Gudkov A.G. Radioapparatura v usloviyah rynka. Kompleksnaya tekhnologicheskaya optimizaciya. M.: SAJNS-PRESS. 2008. 336 s., il.
  4. Agasieva S.V., Gudkov A.G. i dr. Povyshenie nadezhnosti i kachestva GIS i MIS SVCH. Kn. 1 / Pod red. A.G. Gudkova i V.V. Popova. M.: OOO «Avtotest». 2012. 212 s.
  5. Agasieva S.V., Gudkov A.G. i dr. Povyshenie nadezhnosti i kachestva GIS i MIS SVCH. Kn. 2 / Pod red. A.G. Gudkova i V.V. Popova. M.: OOO «Avtotest». 2013. 214 s.
  6. Agasieva S.V., Gudkov A.G., Tihomirov V.G. i dr. Povyshenie nadezhnosti i kachestva GIS i MIS SVCH. Kn. 3 / Pod red. V.N. V'yuginova, A.G. Gudkova i V.V. Popova. M.: OOO NTP «Virazh-Centr». 2016. 252 s.
  7. Gudkov A.G. EHlektronnye ustrojstva SVCH. Kn. 2 / Pod red. I.V. Lebedeva. M.: Radiotekhnika. 2008. 400 s.
  8. Gudkov A.G., Popov V.V., CHalyh A.E. i dr. Ustrojstva SVCH i antennye sistemy. Kn.2. Modelirovanie, proektirovanie i tekhnologii SVCH-ustrojstv i FAR. Kollektivnaya monografiya / Pod. red. A.YU. Grineva. Ser. Nauchno-tekhnicheskie serii. M.: Radiotekhnika. 2014. 198 s.
  9. Gudkov, A., Agasieva, S.V., Tikhomirov V.G. etc. The sensitivity research of multiparameter biosensors based on HEMT by the mathematic modeling method // Journal of Physics: Conference Series. 2017. V. 917. Art. № 042016 (Saint Petersburg OPEN 2017). DOI:10.1088/1742-6596/917/4/042016.
  10. Gudkov A.G. etc. Specific features of proton interaction with transistor structures having a 2D AlGaN/GaN channel // Technical Physics Letters. 2016.
  11. V. 42. № 11. P. 1079–1082. DOI: 10.1134/S1063785016110031.
  12. Gudkov, A.G., Agasieva, S.V., Tikhomirov, V.G. etc. Dependence analysis of the GaN HEMT parameters for space application on the thickness AlGaN barrier layer by numerical simulation // 2017 IEEE 2nd International Conference on Opto-Electronic Information Processing (ICOIP 2017). 2017. P. 79–82. DOI:10.1109/optip.2017.8030703.
  13. Gudkov, A., Agasieva, S.V., Tikhomirov, V.G. etc. Simulation of electric field distribution in GaN HEMTs for the onset of structure degradation // Proceedings of the 2017 11th International Workshop on the Electromagnetic Compatibility of Integrated Circuits, EMCCompo 2017. P. 115–118. DOI: 10.1109/EMCCompo.2017.7998094.
  14. Gudkov A.G., Agasieva S.V. etc. Prospects for application of radio-frequency identification technology with passive tags in invasive biosensor system // Biomedical Engineering. 2015. V. 49. Is. 2. Art. № A009. P. 98–101. DOI: 10.1007/s10527-015-9506-x.
  15. Gudkov A.G., Tikhomirov V.G. etc. Evaluation of the influence mode on the CVC GaN HEMT using numerical modeling // Journal of Physics: Conference Series. 2016. V. 741. Is. 1. Art. № 012024 (3rd International School and Conference on Optoelectronics, Photonics, Engineering and Nanostructures, SaintPetersburg OPEN 2016). DOI:10.1088/1742-6596/741/1/012024.
  16. Gudkov A.G. etc. The relationship between the reliability of transistors with 2D AlGaN/GaN channel and organization type of nanomaterial // Technical Physics Letters. 2016. V. 42. № 7. P. 701–703. DOI: 10.1134/S1063785016070075.
  17. Gudkov A.G. etc. Impact of nanomaterial arrangement on the reliability and the electron mobility in AlGaN/GaN HEMTs // Journal of Physics: Conference Series. 2016. V.741. Is. 1. Art. № 012172 (3rd International School and Conference on Optoelectronics, Photonics, Engineering and Nanostructures, Saint Petersburg OPEN 2016). DOI: 10.1088/1742-6596/741/1/012172.
  18. Vetrova N.A., Ivanov Y.A., Kuimov E.V., Pchelintsev K.P., Shashurin V.D. Modeling of currenttran sferin AlAs/GaAs heterostructures with accounting for intervalley scattering // Radioelektronika, Nanosistemy, Informacionnye Tehnologii. 2018. №10(1). P. 71–76.
  19. Vetrova N.A., Skorohodov E.A., SHashurin V.D. Analiz vliyaniya tekhnologicheskih pogreshnostej na vyhodnye ehlektricheskie parametry SVCH-smesitelej radiosignalov na rezonansno-tunnel'nyh diodah // Nauka i obrazovanie: Nauchnoe izdanie MGTU im. N.EH. Baumana. 2011. № 12. C. 26.
  20. Magruder K.C., Levi A. F.J. Optimal design of heterostructure tunnel diode with nonlinear current–voltage characteristic // Physica. 2012. № 44. P. 1503–1509.
  21. Magruder K.C., Levi A.F.J. Optimal design of a semiconductor heterostructure tunnel diode with linear current–voltage characteristic // Physica. 2011.
  22. № 44. P. 322–326.
  23. Morales O., Periago F., VallejoJ. A. Robust Optimal Design of Quantum Electronic Devices // Hindawi. Mathematical Problems in Engineering. 2018. April 2018.
  24. Levi A.F.J. Essential Semiconductor Laser Physics (IPO Concise Physics) // Morgan & Claypool Publishers. 2018. P. 171.
  25. Nadar S., Zaknoune M., Wallart X. High performance heterostructure low barrier diodes for sub-THz detection // IEEE Transactions on Terahertz Science and Technology. 2017. № 7. P. 780–788.
  26. Abramov I.I. Osnovy modelirovaniya ehlementov mikro- i nanoehlektroniki // Saarbrucken: LAPLAMBERT Academic Publishing. 2016. 434 s.
  27. Ding Y.X., Cheng A.Q., Ding D.Z., Chen R.S. Solving the Schrödinger-Poisson equation for simulating the nanoscale high electron mobility transistor using the finite difference method // Applied Computational Electromagnetics Society Symposium (ACES) 2017 (Suzhou, China 1–4 August. 2017). P. 208– 210.
  28. Remnev M.A., Kateev I.Yu., Elesin V.F. Effect of Spacer Layers on Current–Voltage Characteristics of Resonant Tunneling Diode //Semiconductors. 2010. V. 44. № 8. P. 1034–1039.
  29. Fediai A., Marienkov V., Transmission Coefficient Calculation Methods for Semiconductor Nanostructures Modeling // ELNANO. 2012. Kyiv, Ukraine, April 10–12.
June 24, 2020
May 29, 2020

© Издательство «РАДИОТЕХНИКА», 2004-2017            Тел.: (495) 625-9241                   Designed by [SWAP]Studio