Radiotekhnika
Publishing house Radiotekhnika

"Publishing house Radiotekhnika":
scientific and technical literature.
Books and journals of publishing houses: IPRZHR, RS-PRESS, SCIENCE-PRESS


Тел.: +7 (495) 625-9241

 

Modern hybrid-integrated autodyne oscillators of microwave and mm-wave ranges and its’ application. Part 11. Fundamentals of autodyne implementation

DOI 10.18127/j20700784-201902-01

Keywords:

V.Ya. Noskov – Dr.Sc. (Eng.), Professor, Ural Federal University
E-mail: noskov@oko-ek.ru
S.M. Smolskiy – Dr.Sc. (Eng.), Professor, National Research University «MPEI»; Deputy Director of the Institute of Radioengineering and Electronics, Moscow Power Engineering Institute
E-mail: smolskiysm@mail.ru
K.A. Ignatkov – Ph.D. (Eng.), Associate Professor, Ural Federal University
E-mail: k.a.ignatkov@gmail.com
D.Ya. Mishin – Post-graduate Student, Ural Federal University
E-mail: zigievil@gmail.com
A.P. Chupahin – Post-graduate Student, Ural Federal University
E-mail: ccaapp1992@gmail.com


In principle, autodynes (AD) represent a totality of the microwave oscillator and registration (extraction) means for the autodyne signals. The AD signals are usually extracted according to variations of currents or voltages in the power source circuit of the active element (AE) of the microwave (or mm-wave) oscillator. Practically, in this case, any microwave oscillator without essential variations of its design can be used as AD. The special autodyne modules, which signals are detected on variations of the amplitude or the oscillation frequency, are developed and manufactured in a series of applications. At that, slight complication of the oscillator design is quite defensible since it provides improvement of autodyne system parameters (sensitivity, the radar potential characteristics, the dynamic range, etc.) and expansion of its functional possibilities (measurement of a velocity, the passed path, a distance, etc.).
In this review, the analysis of construction principles of autodyne reception-transmission modules and various oscillators as well as circuit solutions of registration means for autodyne response is described. In addition, some results of original authors’ investigations are presented.
In the first section of the paper, the functional diagrams of autodyne sensors, which provide the measurement possibilities of the target velocity, the passed path, an acceleration, and direction of movement, are considered. At first, the circuit of the simplest radar sensor, which uses the traditional microwave oscillator as the transceiver and may be made on the Gunn diodes, IMPATT diodes, or BARRIT diodes, is discussed. The autodyne signal extraction in it is fulfilled in the power source circuit of the oscillating diode with the help of the specific circuit of the registration unit (RU).
One of distinctive features of autodyne short-range radar systems compared to the systems with the homodyne transceiver architecture is the presence of anharmonic distortions of the radar signal. At that, we should note that the signal distortion degree is defined by the feedback parameter of Cfb value, which depends on the reflection signal amplitude and on the distance to the target. In the case negligible values of this parameter (when Cfb<<1), autodyne signals have practically the harmonic shape, as in the homodyne systems. With increase of reflected signal level and the distance to the target, the Cfb value grows and, accordingly, the signal distortion degree increases. This phenomenon, which is caused by nonlinearity of the phase incursion of reflected emission due to autodyne frequency variations, is mainly manifested in the mm-wave range, especially, in its shorter part. Factually, this phenomenon restricts the dynamic range of autodynes short-range radars and creates problems for signal processing.
To reduce autodyne signal distortions it is offered to stabilize the autodyne frequency, for instance, by means of additional high-Q cavity application in the oscillator of the feedback on frequency. In this paper we describe the engineering solutions of autodyne modules, which can realize these suggestions.
Then, the description on construction principles of transceivers is presented, in which autodyne signals are registered not only in the power source circuit but on variation of oscillation amplitude and frequency. At that, amplitude variations are registered with the help of one or two detector diodes embedded additionally in the module. The frequency variations are transformed from the microwave oscillator in the low-frequency region with the help of additional AD, which operates as the autodyne frequency converter and after them are detected. Signals obtained have the relative phase displacements (offsets), which provide a possibility of reliable determination of movement direction of the reflecting targets owing to the sign change of its phase difference depending on the sign of the radial components of the relative movement velocity. At the end of this section, the description of the so-called double-diode autodyne transceiver module is presented. Constructively, it represents two in series-connected oscillating modules realized in the «passage» manner in chambers of the flange type. The comparative advantages of the double-diode autodyne are shown.
In the second section of this review, at first, we consider the general principles of registration circuits design for autodyne signal in the AD bias circuits. At that, we show that the current for devices with the volt-ampere curve of N-type (the Gunn diode) and the voltage for devices of S-types (IMPATT and BARITT diodes) are optimal registered parameters of the autodyne response from the point of view of the best stability of the transfer functions.
Then for the autodyne on the Gunn diode, at first, the traditional principle of voltage signal extraction with the help of the one-port connected in series into the power source circuit. Such one-ports are usually made on the resistor, the choke (inductance) or the transformer base. Circuits on the base of transistors and op-amps are described, which under some conditions provide the autodyne signal selectivity in the required frequency band and improvement of some AD parameters. Nevertheless, we must note that all above-considered registration devices have the common drawback, which relates to the presence of the low-frequency load reaction on the AD operation mode in the microwave area. This reaction degrades the AD operation stability and causes variations of its mode when changing the Gunn diode specimen. Besides, the simplest registration circuits do not provide the AD output protection against penetration of the power source noise.
After that, the implementation principle is examined and description of specific RU circuit solution is given for autodynes on Gunn diodes, which provide the optimal conditions of transformation of Gunn diode current variations into the output signal voltage in the short-circuit mode at output. This mode is provided under condition of the voltage source application. At that, improvement of AD noise characteristics occurs as well.
At the end of the section, the signal registration principle is examined for autodynes made on the base of active elements with volt-ampere characteristic of the S-type. We note that for oscillator on these types of active elements, the feeding from the current source and registration on voltage signal are optimal. Since the response of AD, which is made on IMPATT and BARITT diodes, is represented in the form of voltage, in this case, it is not necessary to transform it additionally. Therefore, registration devices for AD on IMPATT and BARITT diodes do not differ by large variety of engineering solutions and contain the only current source, which automatically realizes optimal conditions of autodyne signal extraction, namely: registration on voltage.
Then the description of current source circuit is given, which differs from conventional by the fact that it contains a system of double control. The current regulator implemented of the microwave transistor in the usual manner in common base circuit and contained the comparison device and op-amp maintain the feeding current of IMPATT diode with great accuracy. The second loop of regulation maintains the voltage drop on the current regulator.
Another circuit of the current source presented at the end of the second section provides the double-step pulse modulation of emission of AD on IMPATT diode and simultaneous signal registration, which is received from the radar object. The described IMPATT AD modulation principle essentially decreases the intra-pulse frequency variations. When using ICs of K1554 series in the former, the radio-pulse edges duration is the parts of nanoseconds. The offered circuit, together with IMPATT AD of 8mm-range of КА717В-4 type, was used in the double-channel autodyne sensor for target detection at given distance.
From the review fulfilled, we can make conclusions that engineering solutions, which we have at present, at insignificant construction modernization of transceiver modules, provide improvement of parameters of usual autodynes and expansion of functional possibilities of short-range radars. Implementation of described construction principles for autodyne modules in the hybrid-integrated and monolithic realization will promote to reduce its cost, weight-dimension parameters, which will be the additional stimulus to widen its application area.
Compared to traditional methods of autodyne signal extraction in the power source circuit of microwave oscillators, which use the simplest circuits, registration circuited described in this review have the whole series of significant advantages both in achieved AD parameters and in operation-technical indices and in oscillator mode stability in the temperature range. In addition, these circuits allow operation from the power sources with relatively moderate requirements to the pulsation and noise level. The analysis of examined registration devices allows conclusion that the main principles of its construction can be used at implementation of miniature autodyne short-range radars realizex according to integrated technology.

References:
  1. Votoropin S.D., Noskov V.Ya., Smol'skij S.M. Sovremennye gibridno-integral'nye avtodinnye generatory mikrovolnovogo i millimetrovogo diapazonov i ih primenenie. Ch. 1. Konstruktorsko-tehnologicheskie dostizheniya // Uspehi sovremennoj radioelektroniki. 2006. № 12. S.3–30.
  2. Votoropin S.D., Noskov V.Ya., Smol'skij S.M. Sovremennye gibridno-integral'nye avtodinnye generatory mikrovolnovogo i millimetrovogo diapazonov i ih primenenie. Ch. 2. Teoreticheskie i eksperimental'nye issledovaniya // Uspehi sovremennoj radioelektroniki. 2007. № 7. S. 3–33.
  3. Votoropin S.D., Noskov V.Ya., Smol'skij S.M. Sovremennye gibridno-integral'nye avtodinnye generatory mikrovolnovogo i millimetrovogo diapazonov i ih primenenie. Ch. 3. Funkcional'nye osobennosti avtodinov // Uspehi sovremennoj radioelektroniki. 2007. № 11. S. 25–49.
  4. Votoropin S.D., Noskov V.Ya., Smol'skij S.M. Sovremennye gibridno-integral'nye avtodinnye generatory mikrovolnovogo i millimetrovogo diapazonov i ih primenenie. Ch. 4. Issledovaniya mnogochastotnyh avtodinov // Uspehi sovremennoj radioelektroniki. 2008. № 5. S. 65–88.
  5. Votoropin S.D., Noskov V.Ya., Smol'skij S.M. Sovremennye gibridno-integral'nye avtodinnye generatory mikrovolnovogo i millimetrovogo diapazonov i ih primenenie. Ch. 5. Issledovaniya avtodinov s chastotnoj modulyaciej // Uspehi sovremennoj radioelektroniki. 2009. № 3. S. 3–50.
  6. Noskov V.Ya., Smol'skij S.M. Sovremennye gibridno-integral'nye avtodinnye generatory mikrovolnovogo i millimetrovogo diapazonov i ih primenenie. Ch. 6. Issledovaniya radioimpul'snyh avtodinov // Uspehi sovremennoj radioelektroniki. 2009. № 6. S. 3–51.
  7. Noskov V.Ya., Ignatkov K.A., Smol'skij S.M. Sovremennye gibridno-integral'nye avtodinnye generatory mikrovolnovogo i millimetrovogo diapazonov i ih primenenie. Ch. 7. Dinamika formirovaniya avtodinnyh i modulyacionnyh harakteristik // Uspehi sovremennoj radioelektroniki. 2013. № 6. S. 3–52.
  8. Noskov V.Ya., Ignatkov K.A., Smol'skij S.M. Sovremennye gibridno-integral'nye avtodinnye generatory mikrovolnovogo i millimetrovogo diapazonov i ih primenenie. Ch. 8. Avtodiny so stabilizaciej chastoty vneshnim vysokodobrotnym rezonatorom // Uspehi sovremennoj radioelektroniki. 2013. № 12. S. 3–42.
  9. Noskov V.Ya., Varavin A.V., Vasil'ev A.C., Ermak G.P., Zakarlyuk N.M., Ignatkov K.A., Smol'skij S.M. Sovremennye gibridno-integral'nye avtodinnye generatory mikrovolnovogo i millimetrovogo diapazonov i ih primenenie. Ch. 9. Radiolokacionnoe primenenie avtodinov // Uspehi sovremennoj radioelektroniki. 2016. № 3. S. 32–86.
  10. Noskov V.Ya., Smol'skij S.M., Ignatkov K.A., Mishin D.Ya., Chupahin A.P. Sovremennye gibridno-integral'nye avtodinnye generatory mikrovolnovogo i millimetrovogo diapazonov i ih primenenie. Ch. 10. Osnovy analiza i rascheta parametrov avtodinov s uchetom shumov // Uspehi sovremennoj radioelektroniki. 2018. № 3. S. 18–52.
  11. Komarov I.V., Smolskiy S.M. Fundamentals of short-range FM radar. Artech House, Norwood, MA, USA. 2003.
  12. Komarov I.V., Smol'skij S.M. Osnovy teorii radiolokacionnyh sistem s nepreryvnym izlucheniem chastotno-modulirovannyh kolebanij. M.: Goryachaya liniya. Telekom. 2010.
  13. Zakarlyuk N.M., Noskov V.Ya., Smol'skij S.M. Avtodinnye datchiki dlya zheleznodorozhnyh pereezdov // Materialy XX Mezhdunar. Krymskoj konf. «SVCh-tehnika i telekommunikacionnye tehnologii» (KryMiKo'2010). Sevastopol': Veber. 2010. T. 2. S. 1072–1076.
  14. Usanov D.A., Skripal' Al.V., Skripal' An.V. Fizika poluprovodnikovyh radiochastotnyh i opticheskih avtodinov. Saratov: Izd-vo SGU. 2003.
  15. Zakarlyuk N.M., Noskov V.Ya., Smol'skij S.M. Bortovye avtodinnye datchiki skorosti dlya aeroballisticheskih ispytanij // Materialy XX Mezhdunar. Krymskoj konf. «SVCh-tehnika i telekommunikacionnye tehnologii» (KryMiKo'2010). Sevastopol': Veber. 2010. T. 2. S. 1065–1068.
  16. Alidoost S.A., Sadeghzade R., Fatemi R. Autodyne system with a single antenna // 11th International Radar Symposium (IRS-2010). Vilnius, Lithuania. 2010. V. 2. P. 406–409.
  17. Usanov D.A., Skripal' Al.V., Skripal' An.V., Postel'ga A.E. Sverhvysokochastotnyj avtodinnyj izmeritel' parametrov vibracij // Pribory i tehnika eksperimenta. 2004. № 5. S. 130–134.
  18. Usanov D.A., Postel'ga A.E. Vosstanovlenie slozhnogo dvizheniya uchastka tela cheloveka po signalu radiovolnovogo avtodina // Medicinskaya tehnika. 2011. T. 45. № 1. S. 8–10.
  19. Lushev V.P., Votoropin S.D., Deryabin Yu.N., Zhurinov Yu.B., Potapov M.G. Avtodinnye SVCh datchiki peremescheniya dlya izmereniya skorosti goreniya vysokoenergeticheskih kompozicionnyh materialov // Materialy XV Mezhdunar. Krymskoj konf. «SVCh-tehnika i telekommunikacionnye tehnologii» (KryMiKo'2005). Sevastopol': Veber. 2005. S. 831–833.
  20. Boloznev V.V., Mirsaitov F.N., Noskov V.Ya. Signal'nye i shumovye harakteristiki avtodinov v reshenii zadach vibrodiagnostiki gazoturbinnyh dvigatelej // Materialy XXIV Mezhdunar. Krymskoj konf. «SVCh-tehnika i telekommunikacionnye tehnologii» (KryMiKo'2014). Sevastopol': Veber. 2014. T. 2. S. 1019–1022.
  21. Noskov V.Ya., Ignatkov K.A., Smol'skij S.M. Nelinejnye iskazheniya signalov v stabilizirovannyh avtodinnyh SVCh generatorah // Pribory i tehnika SVCh. 2011. № 1. S. 31–39.
  22. Noskov V.Ya., Ignatkov K.A., Chupahin A.P. Dvuhdiodnyj avtodin v sistemah radiovolnovogo kontrolya dinamicheskih processov // Datchiki i sistemy. 2016. № 6 (204). S. 31–37.
  23. Noskov V.Ya., Ignatkov K.A., Chupahin A.P. Primenenie dvuhdiodnyh avtodinov v ustrojstvah radiovolnovogo kontrolya razmerov izdelij // Izmeritel'naya tehnika. 2016. № 7. S. 24–28.
  24. Nagano S., Akaiwa Y. Behavior of Gunn diode oscillator with a moving reflector as a self-excited mixer and a load variation detector // IEEE Transactions on Microwave Theory and Techniques. 1971. V. 19. № 12. P. 906–910.
  25. Kotani M., Mitsui S., Shirahata K. Load-variation detector characteristics of a detector-diode loaded Gunn oscillator // Electronics and Communications in Japan. 1975. V. 58–B, № 5. R. 60–66.
  26. Noskov V.Ya., Ignatkov K.A., Chupahin A.P. Principy postroeniya avtodinnyh priemoperedatchikov // Materialy XXVII Mezhdunar. Krymskoj konf. «SVCh-tehnika i telekommunikacionnye tehnologii» (KryMiKo'2017). Sevastopol'. 2017. T. 6. S. 1382–1388.
  27. Takayama Y. Doppler signal detection with negative resistance diode oscillators // IEEE Transactions on Microwave Theory and Techniques. 1973. V. MTT-21. № 2. R. 89–94.
  28. Gupta M-S., Lomax R.J., Haddad G.I. Noise consideration in self-mixing IMPATT-diode oscillators for short-range Doppler radar applications // IEEE Transactions on Microwave Theory and Techniques. 1974. V. 22. № 1. P. 37–43.
  29. Nygren T., Sjolund A. Sensitivity of Doppler radar with self-detecting diode oscillators // IEEE Transactions on Microwave Theory and Techniques. 1974. V. 22. № 5. P. 494–498.
  30. Noskov V.Ya., Ignatkov K.A., Smol'skij S.M. Zavisimost' avtodinnyh harakteristik ot vnutrennih parametrov SVCh generatorov // Radiotehnika. 2012. № 6. S. 24–42.
  31. Noskov V.Ya., Ignatkov K.A., Smolskiy S.M. Determination of autodyne oscillator parameters by the beating metod // Telecommunication Sciences. 2012. V. 3. № 1. P. 35–45.
  32. Noskov V.Ya., Ignatkov K.A. Dynamic autodyne and modulation characteristics of microwave oscillators // Telecommunication and Radio Engineering. 2013. V. 72. № 10. P. 919–934.
  33. Noskov V.Ya., Ignatkov K.A. Osobennosti shumovyh harakteristik avtodinov pri sil'noj vneshnej obratnoj svyazi // Izv. vuzov. Fizika. 2013. T. 56. № 12. S. 112–124.
  34. Noskov V.Ya., Ignatkov K.A. Autodyne signals in case of random delay time of the reflected radiation // Telecommunication and Radio Engineering. 2013. V. 72. № 16. P. 1521–1536.
  35. Noskov V.Ya., Ignatkov K.A. Dinamicheskie osobennosti avtodinnyh signalov // Izv. vuzov. Fizika. 2013. T. 56. № 4. S. 56–64.
  36. Noskov V.Ya. Ob energeticheskom potenciale avtodinov // Materialy XXIV Mezhdunar. Krymskoj konf. «SVCh-tehnika i telekommunikacionnye tehnologii» (KryMiKo'2014). Sevastopol': Veber. 2014. S. 1029–1030.
  37. Noskov V.Ya., Ignatkov K.A. Shumovye harakteristiki avtodinov so stabilizaciej chastoty vneshnim vysokodobrotnym rezonatorom // Radiotehnika i elektronika. 2016. T. 61. № 9. S. 905–918.
  38. Kasatkin L.V., Chajka V.E. Poluprovodnikovye ustrojstva diapazona millimetrovyh voln. Sevastopol': Veber. 2006.
  39. Noskov V.Ya., Smol'skij S.M. Registraciya avtodinnogo signala v cepi pitaniya generatorov na poluprovodnikovyh diodah SVCh. (Obzor) // Tehnika i pribory SVCh. 2009. № 1. S. 14–26.
  40. Skolnik M.I. Radar Handbook. New York: McGraw-Hill Companies. 2008.
  41. Lazarus M.J., Pantoja F.P., Somekh M., Novak S., Margison S. New direction-of-motion Doppler detector // Electronics Letters. 1980. V. 16. № 25. P. 953–954.
  42. Votoropin S.D., Donskov S.V. Noskov V.Ya., Smol'skij S.M. Analiz avtodinnogo signala ot raspredelennogo otrazhayuschego ob'ekta // Materialy XVII Mezhdunar. Krymskoj konf. «SVCh-tehnika i telekommunikacionnye tehnologii» (KryMi-Ko'2007). Sevastopol': Veber. 2007. S. 744–747.
  43. Noskov V.Ya. Avtodinnyj datchik s obratnoj svyaz'yu po chastote // Radiopromyshlennost'. 1993. № 7–9. S. 41–43.
  44. Carapkin D.P. Generatory SVCh na diodah Ganna. M.: Radio i svyaz'. 1982.
  45. Buzykin V.T., Noskov V.Ya. Avtodiny. Oblasti primeneniya i perspektivy razvitiya // Radiotehnicheskie sistemy millimetrovogo i submillimetrovogo diapazonov. Har'kov: Institut radiofiziki i elektroniki AN Ukrainy. 1991. S. 38–47.
  46. Avt. svidet. 1775696 (CCCR). Avtodinnyj radiolokator / Buzykin V.T., Votoropin S.D., Noskov V.Ya. Prior. 14.01.1991. Opubl. BI № 42–92.
  47. Votoropin S.D., Noskov V.Ya. Avtodinnyj radiolokator s opredeleniem napravleniya dvizheniya otrazhayuschih ob'ektov // Materialy XVI Mezhdunar. Krymskoj konf. «SVCh-tehnika i telekommunikacionnye tehnologii» (KryMiKo'2017). Sevastopol': Veber. 2006. S. 888–890.
  48. Patent 4980633 (SShA). Method and apparatus for measuring a vehicle's own speed by the Doppler radar principle. Roskoni U. Prior. 25.12.1990.
  49. Noskov V.Ya. Dvuhdiodnyj avtodinnyj priemoperedatchik // Pribory i tehnika eksperimenta. 2015. № 4. S. 65–70.
  50. Noskov V.Ya., Ermak G.P. Signal and fluctuation characteristics of autodyne vibration and displacement meters // Telecommunication and Radio Engineering. 2014. V. 73. № 19. P. 1727–1743.
  51. Noskov V.Ya., Vasiliev A.S., Ermak G.P., Ignatkov K.A., Chupahin A.P. Parameters' calculation of autodyne sensors taking into account the noise of the power source // Telecommunication and Radio Engineering. 2016. V. 75. № 5. P. 441–454.
  52. Noskov V.Ya., Ignatkov K.A., Chupahin A.P. Features of autodynes taking into consideration the noise of a power supply // 13–th International scientific-technical conference on actual problems of electronic instrument engineering APEIE-2016. Novosibirsk. 2016. V. 1. Part 1. P. 492–496.
  53. Noskov V.Ya., Tumanov B.N. Issledovanie cepej pitaniya avtodinov na poluprovodnikovyh SVCh generatorah // Radiofizika i issledovanie svojstv veschestva. Omsk: OGPI. 1981. S. 76–89.
  54. Noskov V.Ya. Registraciya avtodinnogo signala v cepi pitaniya SVCh generatorov na poluprovodnikovyh diodah // Radiopromyshlennost'. 1993. № 5–6. S. 28–32.
  55. Kulikovskij A.A. Ustojchivost' aktivnyh linearizovannyh cepej s usilitel'nymi priborami novogo tipa. M.-L.: Gosenergoizdat. 1962.
  56. Andreev V.S. Teoriya nelinejnyh elektricheskih cepej. M.: Svyaz'. 1972.
  57. Brackett C.A. The elimination of tuning-induced burnout and bias-circuit oscillations in IMPATT oscillators // The Bell System Technical Journal. 1973. V. 52. № 3. P. 271–306.
  58. Patent 2033434 (Franciya). Radar a effect Doppler a diodes a effect Gunn / Magarahack J.M., Delaplase O. Prior. 24.02.1969.
  59. Patent 3852743 (SShA). Homodyne Doppler radar with increased target sensitivity / Gupta R.R. Prior. 18.09.1970.
  60. Patent 3852743 (SShA). Range-detecting Doppler radar / Gupta R.R. Prior. 02.06.1970.
  61. Kostylev S.A., Goncharov V.V., Sokolovskij I.I., Chelyadin A.V. Poluprovodniki s ob'emnoj otricatel'noj provodimost'yu v SVCh polyah: Elektronnye processy i funkcional'nye vozmozhnosti. Kiev: Naukova dumka. 1987.
  62. Noskov V.Ya. Analiz avtodinnogo effekta v SVCh generatorah s cep'yu avtosmescheniya pervogo poryadka // Elektronnaya tehnika. Ser. 1. SVCh-tehnika. 1992. № 6. S. 24–30.
  63. Smol'skij S.M. Optimizaciya avtodinnogo rezhima generatorov SVCh s uchetom uslovij ustojchivosti // Trudy MEI. 1979. № 397. S. 69–73.
  64. Lazarus M.J., Silvertown A., Novak S. Fresnel-zone plate aids low-cost Doppler design // Microwaves. 1979. № 11. P. 78–80.
  65. Avt. svidet. 1826073 (SSSR). Avtodinnyj generator. Buzykin V.T., Zakarlyuk N.M., Noskov V.Ya. Prior. 25.12.1990. Opubl. BI № 25–93.
  66. Ivanov V.E., Noskov V.Ya., Smol'skij S.M. Dvuhkanal'naya radioimpul'snaya SBRL na diode Ganna // Materialy XIX Mezhdunar. Krymskoj konf. «SVCh-tehnika i telekommunikacionnye tehnologii» (KryMiKo'2009). Sevastopol': Veber. 2009. S. 817–820.
  67. Votoropin S.D., Noskov V.Ya., Smol'skij S.M. Analiz avtodinnogo effekta radioimpul'snogo generatora // Izv. vuzov. Fizika. 2008. T. 51. № 3. S. 64–70.
  68. Avt. svidet. 1706303 (SSSR). Radiolokacionnoe ustrojstvo. Buzykin V.T., Vesnin V.A., Krasil'nikov Yu.L., Noskov V.Ya. Prior. 15.05.1988. Opubl. BI № 2–91.
  69. Noskov V.Ya. Analiz avtodinnogo generatora s cep'yu avtosmescheniya vtorogo poryadka // Elektronnaya tehnika. Ser.: SVCh-tehnika. 1992. № 1. S. 8–10.
  70. Ostrejkovskij A.V. O povyshenii avtodinnoj chuvstvitel'nosti generatora na diode Ganna // Elektrodinamika i fizika SVCh. Dnepropetrovsk: DGU. 1985. S. 6–8.
  71. Ostrejkovskij A.V. Osobennosti nizkochastotnoj neustojchivosti generatorov Ganna // Radiotehnika. 1989. № 6. S. 19–22.
  72. Avt. svidet. 1246859 (SSSR). Sposob nastrojki avtodinnogo generatora na diode Ganna / Bartashevskij E.L., Ostrejkov-skij A.V., Privalov E.N., Homenko V.I. Prior. 04.01.1984.
  73. Borodovskij P.A., Buldygin A.F., Utkin K.K. Avtodinnyj smesitel' na diode Ganna // Izvestiya vuzov. Ser.: Radioelektronika. 1974. № 12. S. 82–84.
  74. Pejton A.Dzh., Volsh V. Analogovaya elektronika na operacionnyh usilitelyah. M.: BINOM. 1994.
  75. Patent 4117464 (SShA). Microwave motion-detection apparatus employing a Gunn oscillator in a self-detecting mode / Lutz E.B. Prior. 11.11.1976.
  76. Noskov V.Ya., Smol'skij S.M. Sxemy registracii avtodinnogo signala generatorov na diodah Ganna // Materialy XIX Mezhdunar. Krymskoj konf. «SVCh-tehnika i telekommunikacionnye tehnologii» (KryMiKo'2009). Sevastopol': Veber. 2009. S. 809–812.
  77. Votoropin S.D, Noskov V.Ya., Smol'skij S.M. Analiz temperaturnyh harakteristik avtodinnyh generatorov na diodah Ganna // Materialy XVIII Mezhdunar. Krymskoj konf. «SVCh-tehnika i telekommunikacionnye tehnologii» (KryMiKo'2008). Sevastopol': Veber. 2008. S.105–108.
  78. Votoropin S.D., Noskov V.Ya. Priemoperedayuschie moduli na slabotochnyh diodah Ganna dlya avtodinnyh sistem // Elektronnaya tehnika. Ser.: SVCh-tehnika. 1993. № 4. S. 70–72.
  79. Zakarlyuk N.M., Noskov V.Ya. Universal'nyj istochnik toka dlya lavinno-proletnyh diodov // Pribory i tehnika eksperimenta. 1985. № 1. S.132–133.
  80. Titov A.A., Pushkarev V.P., Pelyavin D.Yu., Shuhlov I.V. Impul'snyj sverhvysokochastotnyj generator dlya sistem blizhnej radiolokacii i radionavigacii // Pribory i tehnika eksperimenta. 2011. № 5. S. 111–114.

© Издательство «РАДИОТЕХНИКА», 2004-2017            Тел.: (495) 625-9241                   Designed by [SWAP]Studio