Radiotekhnika
Publishing house Radiotekhnika

"Publishing house Radiotekhnika":
scientific and technical literature.
Books and journals of publishing houses: IPRZHR, RS-PRESS, SCIENCE-PRESS


Тел.: +7 (495) 625-9241

 

Does defocusing a multibeam hybrid-mirror antenna reduce the number of feeds?

DOI 10.18127/j19998465-201812-03

Keywords:

A.G. Romanov – Ph.D.(Eng.), Main Designer, JSC Academician M.F. Reshetnev «ISS» (Zheleznogorsk)
E-mail: romanov@iss-reshetnev.ru
N.A. Testoedov – Dr.Sc.(Eng.), Corresponding Member of RAS, Professor,
JSC Academician M.F. Reshetnev «ISS» (Zheleznogorsk)
E-mail: testoedov@iss-reshetnev.ru
V.V. Mochalov – Leading Engineer, JSC Academician M.F. Reshetnev «ISS» (Zheleznogorsk)
E-mail: mvv115@mail.ru
I.Yu. Danilov – Ph.D.(Eng.), Head of Department, JSC Academician M.F. Reshetnev «ISS» (Zheleznogorsk)
E-mail: danilov@iss-reshetnev.ru
Yu.I. Choni – Ph.D.(Eng.), Associate Professor, Kazan National Research Technical University named after A.N. Tupolev
E-mail: tchoni@rambler.ru


The assessment of the feasibility of defocusing a large-sized multibeam hybrid-mirror antenna (MHMA), that is, the displacement of the antenna array web (AAW) from the focus, in the interests of rarefaction of the AAW, is considered. It is noted that the characteristics of the MHMA were calculated using a high-performance simulation program, the consistency of which is confirmed by comparison with the data of other authors. It is shown that the results of multivariate calculations performed with the two cluster formation strategies indicate that the seemingly tempting idea of defocusing does not benefit from the gain of the rays in comparison with the non-displaced AAW and is not effective in this regard. First, in any method of cluster formation, defocusing does not introduce a noticeable gain compared with the arrangement of the antenna web in the focal plane. Secondly, it is clear that the decrease in the gain of the rays, which is manifested by dilution of the AAW, can be compensated for by moving from elements designed for a 100 mm cell to elements adapted to increased cell sizes. However, the relative change in the gain when the plane of the antenna web is shifted does not depend on the factor noted above.

References:
  1. Rahmat-Samii Y. A generalized reflector/array surface compensation algorithm for gain and sidelobe control // IEEE AP-S Symposium. Blacksburg, VA, USA. 1988. AP. V. 19. № 4. P. 760−763.
  2. Gryanik M.V., Loman V.I. Razverty’vaemy’e zerkal’ny’e antenny’ zontichnogo tipa. M.: Radio i svyaz’. 1987. 72 s.
  3. Adelman H.M., Padula S.L. Integrated thermal structural electromagnetic design optimization of large space antenna reflectors // NASA-TM-87713. NASA Langley Research Center. Hampton, VA, USA. June 1986. URL = https://ntrs.nasa.gov/archive/nasa/ casi.ntrs.nasa.gov/19860019512.pdf (data obrashheniya 16.09.17).
  4. Acosta R.J. Compensation of Reflector Surface Distortions Using Conjugate Field Matching // International IEEE A/P-S Symposium and National Radio Science Meeting. Philadelphia, Pennsylvania. June 1986. P. 1−6. URL = https://ntrs.nasa.gov/archive/nasa/ casi.ntrs.nasa.gov/19860006991.pdf (data obrashheniya 12.09.17).
  5. Roberto J., Zaman A. Adaptive feed array compensation system for reflector antenna surface distortion // NASA-TM-101458. Prepared for the 1989 IEEE AP-S International Symposium and URSI Radio Science Meeting. San Jose, California. June 26−30 1989.
  6. Alan R., Roberto J., Peter T., Lee Shung-Wu Compensation of reflector antenna surface distortion using an array feed // IEEE Transactions on Antennas and Propagation. 1989. V. 37. № 8.
  7. Smith W.T., Stutzman W.L. A pattern synthesis technique for array feeds to improve radiation performance of large distorted reflector antennas // IEEE Transactions on Antennas and Propagation. 1992. V. 40. № 1. P. 57−62.
  8. Pat. RU № 2578289. H01Q 25/00. Sposob formirovaniya klasterny’x zon obluchayushhej reshetkoj mnogoluchevoj gibridnoj zerkal’noj antenny’ / Laskin B.N., Somov A.M.; zayavl. 29.12.2014; opubl. 28.03.2016.
  9. Ponomarev L.I., Vechtomov V.A., Miloserdov A.S. Bortovy’e czifrovy’e mnogoluchevy’e antenny’e reshetki dlya sistem sputnikovoj svyazi / Pod red. L.I. Ponomareva. M.: Izd-vo MGTU im. N.E’. Baumana. 2016. 197 s.
  10. Huber S., Younis M., Krieger G., Moreira A., Wiesbeck W. A reflector antenna concept robust against feed failures for satellite communications // IEEE Transactions on Antennas and Propagation. 2015. V. 63. № 4. P. 1218−1224.
  11. Danilov I.Yu., Mochalov V.V., Romanov A.G., Choni Yu.I. Dofokusirovka mnogoluchevoj gibridno-zerkal’noj antenny’ v usloviyax e’kspluataczionny’x nagruzok // Naukoemkie texnologii. 2017. T. 18. № 12. S. 85−90.
  12. Choni Yu.I., Romanov A.G., Danilov I.Yu., Mochalov V.V., Bartenev V.A., Shemyakov A.O. On the efficiency of defocusing a large satellite multi-beam hybrid parabolic antenna // Workshop Proceedings and sent to IOP Conference Series: Materials Science and Engineering (MSE). Abstract book. Advanced Technologies in Aerospace, Mechanical & Automation Engineering: Mist: Aerospace – 2018. Krasnoyarsk. P. 26.

© Издательство «РАДИОТЕХНИКА», 2004-2017            Тел.: (495) 625-9241                   Designed by [SWAP]Studio