Radiotekhnika
Publishing house Radiotekhnika

"Publishing house Radiotekhnika":
scientific and technical literature.
Books and journals of publishing houses: IPRZHR, RS-PRESS, SCIENCE-PRESS


Тел.: +7 (495) 625-9241

 

Raman spectroscopy and x-ray diffraction of zirconium dioxide, doped rare earth metals

DOI 10.18127/j19998465-201811-07

Keywords:

A.F. Belyanin – Dr.Sc.(Eng.), Professor, Head of Department, Central Research Technological Institute «Technomash» (Moscow)
E-mail: belyanin@cnititm.ru
A.S. Bagdasaryan – Dr.Sc.(Eng.), Professor, Main Research Scientist, Kotel'nikov IRE of RAS (Moscow)
E-mail: bagdassarian@mail.ru
A.I. Yurin – Ph.D.(Eng.), Associate Professor, HSE (Moscow)
E-mail: ayurin@hse.ru

This paper presents the conditions for the synthesis of powders and the formation of ceramics based on ZrO2, solid solutions of ZrO2 and rare earth metal oxides R2O3 (R – Dy, Gd, Ho, Pr, Y, Yb), as well as a mixture of solid solution ZrO2-Y2O3 and Al2O3. The composition and structure of the obtained materials by Raman spectroscopy and x-ray diffractometry are studied. The synthesized compounds consisted of monoclinic, tetragonal and x-ray amorphous phases ZrO2, as well as Al2O3 and carbon materials. The dependence of the composition and structure of the phases that make up the powders and ceramics on the conditions of their production is shown. By varying the conditions of production, it is possible to change the phase composition and structure of the phases of powders and ceramics based on ZrO2.


This paper presents the conditions for the synthesis of powders and the formation of ceramics based on ZrO2, solid solutions of ZrO2 and rare earth metal oxides R2O3 (R – Dy, Gd, Ho, Pr, Y, Yb), as well as a mixture of solid solution ZrO2-Y2O3 and Al2O3. The composition and structure of the obtained materials by Raman spectroscopy and x-ray diffractometry are studied. The synthesized compounds consisted of monoclinic, tetragonal and x-ray amorphous phases ZrO2, as well as Al2O3 and carbon materials. The dependence of the composition and structure of the phases that make up the powders and ceramics on the conditions of their production is shown. By varying the conditions of production, it is possible to change the phase composition and structure of the phases of powders and ceramics based on ZrO2.

References:
  1. Adamski A., Jakubus P., Sojka Z. Synthesis of nanostructured tetragonal ZrO2 of enhanced thermal stability // Nukleonika. 2006. V. 51. Supplement 1. P. 27−33.
  2. Rocha R.A., Muccillo E.N.S., Dessemonda L., Djurado E. Thermal ageing of nanostructured tetragonal zirconia ceramics: Characterization of interfaces // Journal of the European Ceramic Society. 2010. V. 30. P. 227−231.
  3. Belyanin A.F., Samojlovich M.I. Keramicheskie materialy’ na osnove dioksida czirkoniya dlya soedinitelej volokonno-opticheskix sistem peredachi informaczii // Nanoinzheneriya. 2015. № 6. S. 12−19.
  4. Samojlovich M.I., Belyanin A.F., Bagdasaryan A.S., Bovtun V. Stroenie i die’lektricheskie svojstva nanokompozitov: opalovy’e matriczy’ – oksidy’ titana i titanaty’ redkozemel’ny’x e’lementov // Tonkie ximicheskie texnologii. 2016. T. 11. № 2. S. 66−73.
  5. Belyanin A.F., Bagdasaryan A.S. Poluchenie i fizicheskie svojstva nanokompozitov: opalovy’e matriczy’ – mul’tiferroidny’e materialy’ // Naukoemkie texnologii. 2017. T. 18. № 9. S. 59−66.
  6. Samojlovich M.I., Belyanin A.F., Talis A.L., Belyaev O.A. Spektroskopiya kombinaczionnogo rasseyaniya sveta ZrO2, sintezirovannogo v mezhsfericheskix nanopolostyax opalovy’x matricz // Nanoinzheneriya. 2015. № 10. S. 22−28.
  7. Tang X., Zheng X. Raman scattering and t-phase lattice vibration of 3% (mole fraction) Y2O3-ZrO2 // Journal of Materials Science & Technology. 2004. V. 20. № 5. P. 485−489.
  8. He L-F., Bao Y-W., Zhou Y-C. Zirconium aluminum carbides: New precursors for synthesizing ZrO2-Al2O3 composites // Journal of the American Ceramic Society. 2009. V. 92. № 11. P. 2751−2758.
  9. Costantini J-M., Kahn-Harari A., Beuneu F., Couvreur F. Thermal annealing study of swift heavy-ion irradiated zirconia // Journal of Applied Physics. 2006. V. 99. P. 123501.
  10. Qu L., Choy K-L. Thermophysical and thermochemical properties of new thermal barrier materials based on Dy2O3-Y2O3 co-doped zirconia // Ceramics International. 2014. V. 8. № 10. P. 11593−11599.
  11. Kim D-J., Tien T-Y. Phase stability and physical properties of cubic and tetragonal ZrO2 in the system ZrO2-Y2O3-Ta2O5 // Journal of the American Ceramic Society. 1991. V. 74. № 12. P. 3061−3065.
  12. Keramidas V.G., White W.B. Raman scattering study of the crystallization and phase transformations of ZrO2 // Journal of the American Ceramic Society. 1974. V. 57. № 1. P. 22−24.
  13. Naglieri V., Joly-Pottuz L., Chevalier J., Lombardi M., Montanaro L. Follow-up of zirconia crystallization on a surface modified alumina powder // Journal of the European Ceramic Society. 2010. V. 30. P. 3377−3387.
  14. Belyanin A.F., Borisov V.V., Bagdasaryan A.S. Nanostrukturirovanny’e uglerodny’e materialy’ v e’missionnoj e’lektronike // Rossijskij texnologicheskij zhurnal. 2017. T. 5. № 3. S. 22−40.

© Издательство «РАДИОТЕХНИКА», 2004-2017            Тел.: (495) 625-9241                   Designed by [SWAP]Studio