Radiotekhnika
Publishing house Radiotekhnika

"Publishing house Radiotekhnika":
scientific and technical literature.
Books and journals of publishing houses: IPRZHR, RS-PRESS, SCIENCE-PRESS


Тел.: +7 (495) 625-9241

 

Objects borders identification of based on the model of drift of the detectors field

DOI 10.18127/j00338486-201811-04

Keywords:

A.V. Bogoslovsky – Honored Scientist of RF, Dr.Sc.(Eng.), Professor, Department of Mathematics, MESC «Zhukovsky–Gagarin Air Force Academy» (Voronezh)
E-mail: p-digim@mail.ru
A.V. Ponomarev – Ph.D.(Eng.), Associate Professor, Dr.Sc.Candidate, MESC «Zhukovsky–Gagarin Air Force Academy» (Voronezh)
E-mail: cycloida@mail.ru
I.V. Zhigulina – Ph.D.(Eng.), Associate Professor, Professor, Department of Mathematics, MESC «Zhukovsky–Gagarin Air Force Academy» (Voronezh)
E-mail: ira_zhigulina@mail.ru


One of the solutions to the problem of creating a unified formalism in the description of a multilevel representation of the processed image data is to use a self-similar structure of the detectors field. In this paper, a method is proposed for identifying the boundaries of objects by encoding the contrast-topological structure of the output signal of the detectors field based on its drift model.
The method is based on the formation of a detector window, within which a separate detector moves as the entire detectors field drifts. All possible cases of the relative position of the detector window and the limits of illumination are considered. Formulas are obtained for finding the detector readings during its drift depending on the location of the illumination boundary.
An algorithm has been developed for determining the position of the illumination boundary within the detector. At the same time, resizing the detector allows solving the scaling problem. The larger the size of the detector, the smaller the scale of the selected object and computational costs.
The two-zone structure of the detector and the use of its drift mechanism provide a similarity to the structures of the detector - the detectors field, which allows the use of multi-level data representation in a single formal grammar.

References:
  1. Shapiro L., Stokman Dzh. Komp’yuternoe zrenie: Per. s angl. M.: BINOM. Laboratoriya znanij. 2013. 752 s.
  2. Gonsales R., Vuds R. Czifrovaya obrabotka izobrazhenij. M.: Texnosfera. 2012. 1104 c.
  3. Szeliski R. Computer Vision: Algorithms and Applications. New York: Springer. 2010. 957 s.
  4. Zinchenko L.A. Bionicheskie informaczionny’e sistemy’ i ix prakticheskie primeneniya / Pod red. L.A. Zinchenko, V.M. Kurejchika, V.G. Red’ko. M.: Fizmatlit. 2011. 288 s.
  5. Ajficher E’. Czifrovaya obrabotka signalov: prakticheskij podxod. M.: Vil’yams. 2016. 992 c.
  6. Luk’yanicza A.A., Shishkin A.G. Czifrovaya obrabotka videoizobrazhenij. M.: Aj-E’s-E’s Press. 2009. 511 s.
  7. Potapov A.A. Novejshie metody’ obrabotki izobrazhenij / Pod red. A.A. Potapova. M.: Fizmatlit. 2008. 496 s.
  8. Gurevich I.B. Problema raspoznavaniya izobrazhenij. Raspoznavanie. Klassifikacziya. Prognoz. Matematicheskie metody’ i ix primenenie: Ezhegodnik. № 1. M.: Nauka. 1989. 302 s.
  9. Fukunaga K. Vvedenie v statisticheskuyu teoriyu raspoznavaniya obrazov. M.: Nauka. 1979. 368 s.
  10. Pavlidis T. Algoritmy’ mashinnoj grafiki i obrabotki izobrazhenij: Per. s angl. M.: Radio i svyaz’. 1986. 400 s.
  11. Tu Dzh., Gonsales R. Princzipy’ raspoznavaniya obrazov: Per. s angl. M.: Mir. 1978. 410 s.
  12. Osovskij S. Nejronny’e seti dlya obrabotki izobrazheniya: Per. s pol’skogo I.D. Rudinskogo. M.: Finansy’ i statistika. 2002. 344 s.
  13. Uossermen F. Nejrokomp’yuternaya texnika: Teoriya i praktika: Per. s angl. Yu.A. Zuev, V.A. Tochenov. M.: Mir. 1992. 185 s.
  14. Bakut P.A., Kolmogorov G.S. Segmentacziya izobrazhenij: metody’ vy’deleniya granicz oblastej. M.: Zarubezhnaya radioe’lektronika. 1987. № 10. S. 25−45.
  15. Dadzhion D., Mersero R. Czifrovaya obrabotka mnogomerny’x signalov. M.: Mir. 1988.
  16. Perov A.I., Sokolov G.G. Algoritm posledovatel’nogo vy’deleniya kontura ob’‘ekta na dvumerny’x czifrovy’x izobrazheniyax // Radiotexnika. 1998. № 7. S. 83−87.
  17. Xyukkel’ M. Operator naxozhdeniya konturov na kodirovanny’x izobrazheniyax // Integral’ny’e roboty’. M.: Mir. 1973. 421 s.
  18. Sirota A.A., Solomatin A.I. Statisticheskie algoritmy’ obnaruzheniya granicz ob’‘ektov na izobrazheniyax // Vestnik VGU. Ser. Sistemny’j analiz i informaczionny’e texnologii. 2008. № 1. S. 58−64.
  19. Kormen T., Lejzerson Ch., Rivest R. Algoritmy’: postroenie i analiz: Per. s angl. K. Belov i dr. / Nauch. red. A. Shen’. M.: MCzNMO. 2002. 955 s.
  20. Ponomarev A.V., Bogoslovskij A.V., Zhigulina I.V. Detektorny’e polya // Radiotexnika. 2018. № 7. S. 129−136.
  21. Ponomarev A.V., Bogoslovskij A.V., Zhigulina I.V. Model’ drejfa detektornogo polya // Radiotexnika. 2018. № 11. S. 18−22.
May 29, 2020

© Издательство «РАДИОТЕХНИКА», 2004-2017            Тел.: (495) 625-9241                   Designed by [SWAP]Studio