Radiotekhnika
Publishing house Radiotekhnika

"Publishing house Radiotekhnika":
scientific and technical literature.
Books and journals of publishing houses: IPRZHR, RS-PRESS, SCIENCE-PRESS


Тел.: +7 (495) 625-9241

 

Detection of ischemic heart disease by one-channel ECG based on artificial neural networks

DOI 10.18127/j15604136-201809-01

Keywords:

Emad Mahmood Ahmed Taleb - Post-graduate Student, Department of Biomedical and Electronic systems and technology, Vladimir State University named after A.G. and N.G. Stoletovs
E-mail: noor2@mail.ru
L.T. Sushkova - D.Sc. (Eng.), Professor, Head of Department of Biomedical and Electronic systems and technology, Vladimir State University named after A.G. and N.G. Stoletovs
E-mail: ludm@vlsu.ru
Walid Ahmed Al-Haidri- Ph.D. (Eng.), Assistant, Department of Biomedical and Electronic systems and technology, Vladimir State University named after A.G. and N.G. Stoletovs
E-mail: fawaz_tariq@mail.ru
R.V. Isakov - Ph.D.(Eng.), Associate Professor, Department of Biomedical and Electronic systems and technology, Vladimir State University named after A.G. and N.G. Stoletovs
E-mail: Isakov-RV@mail.ru


The wide prevalence and great social significance of ischemic heart disease (IHD) causes the need for timely and maximum reliable diagnosis of the disease. Despite significant success in resolving the issues of prognosis, therapy and prevention of cardiovascular diseases, the mortality and disability of persons of working age from this pathology is growing.
To date, there are many methods of diagnosing IHD, various in its reliability and informativity, including echocardiography, bicycle ergometry, stress tests, perfusion scintigraphy of myocardium, computed tomography (CT), magnetic resonance imaging (MRI), CT angiography, MP- angiography and electron beam tomography, each of which has its advantages disadvantages, such as radiation load in the case of CT, physical activity (cardiac stress test), high time and financial costs in MRI, and the rests. Of the above methods, electrocardiography )ECG( is the most common, affordable and cheap method of objective examination of the heart, as well as absolutely safe, painless and without contraindications to the clinical diagnosis of IHD.
In this paper, we consider the possibility of using artificial neural networks (ANN). for the analysis of electrocardiographic signals recorded by a single-channel ECG in the first lead for the purpose of identifying IHD in the early stages. This approach is based on the use of averaged cardiac cycles (ACC) obtained with the help of a remote cardiomonitoring system (CardioQVARK) and annotated by specialist physicians with confirmation of the diagnosis by standard methods in clinical settings. ANN acts as a classifier of the ACC for the presence or absence of ischemic heart disease in this signal for subsequent recognition and decision-making. As the ANN input data, the first lead leads with the duration of 0.71 s with a sampling frequency of 1000 Hz. During this work, databases were created in the Scilab software environment. On the basis of this data, two samples corresponding to the "Norma" and "Pathology" classes were formed. ANN was trained in the MatLab environment.
The obtained results showed the effectiveness of the proposed approach. The advantages of this approach include the possibility of its use in outpatient settings and low time and financial costs in screening studies, which allows to reduce mortality and disability of able-bodied people due to early identification of IHD and to apply more effective methods of treatment. This technique also allows you to lead a mass population study in free conditions.

References:
  1. World health statistics 2014 (Mirovaya statistika zdravoohraneniya 2014 g.). Vsemirnaya orga-nizaciya zdravoohraneniya. 2014. 178 s.
  2. Latfullin I.A. Ishemicheskaya bolezn' serdca: osnovnye faktory riska, lechenie. Kazan': Izd-vo Kazanskogo un-ta. 2017. 426 s.
  3. Estestvennoe dvizhenie naseleniya v razreze sub"ektov Rossijskoj Federacii za yanvar' – sentyabr' 2016 goda. http://www.gks.ru/free_doc/2016/demo/edn09-2016.xlsx.
  4. Thom T., Haase N., Rosamond W. American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics–2006 update:
  5. Tihonenko V.M. Diagnostika ishemicheskoj bolezni serdca: chto zhdut i chto poluchayut ot funkcional'noj diagnostiki / Institut kardiologicheskoj tekhniki «INKART». https://www.incart.ru/publish/learning-aids/diagnostika-ishemicheskojbolezni-serdcza/
  6. Ivanov G.G., Dvornikov V.E., Popov V.V., Gribanov A.N. Novye metody ehlektrokardiogra-ficheskoj i reograficheskoj diagnostiki // Vestnik RUDN. Ser. Medicina. 2006. № 2. URL: https://cyberleninka.ru/article/n/novye-metody-elektrokardiograficheskoy-i-reograficheskoy-diagnostiki (data obrashcheniya: 10.04.2018).
  7. Ivanov G.G., Sula A.S. Metod dispersionnogo kartirovaniya EHKG v klinicheskoj praktike. M. 2008.
  8. Litvinova M.A. Analiz informativnosti razlichnyh metodov diagnostiki ishemicheskoj bolezni serdca // Zdorov'e i obrazovanie v XXI veke. 2016. № 1. S. 241–245.
  9. Mit'kovskaya N.P., Pateyuk I.V. Bezbolevaya ishemiya miokarda: patofiziologicheskie oso-bennosti, prognosticheskoe znachenie // Medicinskij zhurnal. 2007. № 4. S. 12–15.
  10. Ivanushkina N.G., Ivan'ko E.O., Matveeva N.A. Nejronnye seti dlya raspoznavaniya obrazov pozdnih potencialov predserdij // Electronics and communications. 2013. № 5. S. 72–80.
  11. Kardiomonitor CardioQVARK kardiogramma s pomoshch'yu telefona. URL:http://www.cardioqvark.ru/
  12. Aravin O.I. Primenenie iskusstvennyh nejronnyh setej dlya analiza patologij v krove-nosnyh sosudah // Rossijskij zhurnal biomekhaniki. 2011. T. 15. № 3 (53). S. 45–51.
  13. Voronov I.V., Politov E.A., Efremenko V.M. Obzor tipov iskusstvennyh nejronnyh setej i metodov ih obucheniya // Vestnik KuzGTU. 2007. № 3. S. 38–42.
  14. Al'-Hajdri V.A., Isakov R.V., Sushkova L.T. Issledovanie vliyaniya vybora funkcij aktiva-cii na ehffektivnost' raboty mnogoslojnogo perseptrona. // Nejrokomp'yutery: razrabotka, primenenie. 2015. № 7. S. 60–66.
  15. Budchenko A.A., Mazurova I.YU., Ilyuhin V.I., Hrapova N.P. ROC-analiz rezul'tatov vyyav-leniya antigenov vozbuditelej melioidoza i sapa tverdofaznym immunofermentnym metodom // Materialy VII Mezhdunar. nauchn. konf. «Sistemnyj analiz v medicine» (SAM 2013) / Pod obshch. red. V.P. Kolosova. Blagoveshchensk. 2013. 167 s.
  16. ZHil'cov I.V., Semenov V.M., Zen'kova S.K. Osnovy medicinskoj statistiki. Dizajn bio-medicinskih issledovanij: Prakticheskoe rukovodstvo. Vitebsk: Ministerstvo zdravoohrane-niya Respubliki Belarus', UO «Vitebskij gosudarstvennyj medicinskij universitet». 2014. 153 s.

© Издательство «РАДИОТЕХНИКА», 2004-2017            Тел.: (495) 625-9241                   Designed by [SWAP]Studio