Radiotekhnika
Publishing house Radiotekhnika

"Publishing house Radiotekhnika":
scientific and technical literature.
Books and journals of publishing houses: IPRZHR, RS-PRESS, SCIENCE-PRESS


Тел.: +7 (495) 625-9241

 

Classification of functional and other species systems when they are modeled by convolution polycategories

Keywords:

G.K. Tolokonnikov – Ph.D. (Phys.-Math.), Associate Professor, Leading Research Scientist, Centre VIM, Scientific Research Institute of normal physiology of P.K. Anokhin (Moscow)
E-mail: admcit@mail.ru


Based on the introduced concepts of the neurograph and the neurograph network, the ω-hypergraph, convolution polygraphs and polycategories, a new model of the neuron and neural networks is developing in the work, representing much more pos-sibilities for modeling than traditional models. The categorical implementation of known systems (systems according to M. Mesarovic, ergatic, functional and biomachsystems) is given, formalism of new types of systems is given, the solution of the problem of formalization of the theory of functional systems and system-forming factor by P.K. Anokhin is offered. At the same time, within the framework of categorical systems, a number of known difficulties have been overcome with the implementation of the properties of isomorphism and hierarchy in the system approach.

References:
  1. Anohin P.K. Principial'nye voprosy obshchej teorii funkcional'nyh sistem // V sb. Principy sistemnoj organizacii funkcij. M. 1973. S. 5–61.
  2. Mesarovich M., Mako D., Takahara I. Teoriya ierarhicheskih mnogourovnevyh sistem. M.: Mir. 1973. 344 s.
  3. Mesarovich M., Takahara I. Obshchaya teoriya sistem. M.: Mir. 1978. 316 s.
  4. Goguen J. Categorical Foundations for General Systems Theory // In «Advances in Cybernetics and Systems Research». Transcripta Books. 1973. P. 121–130.
  5. Goguen J., Ginali S. A Categorical Approach to General Systems // In Applied General Systems Research, edited by George Klir. Plenum. 1978. P. 257–270.
  6. SHrejder YU.A., SHarov A.A. Sistemy i modeli. M.: Radio. 1982. 150 s.
  7. Goguen J. A Categorical Manifesto // In Mathematical Structures in Computer Science. March 1991. V. 1. № 1. P. 49–67.
  8. CHernoivanov V.I. Resursosberezhenie i mashiny s ehlementami chelovecheskogo intellekta – otvet na krizisnye vyzovy sovremennosti i budushchego. // Prikladnaya matematika, kvantovaya teoriya i programmirovanie. 2013. T. 10. № 3. S. 9–19.
  9. CHernoivanov V.I., Gulyukin M.I., Tolokonnikov G.K. Bionicheskij podhod k resheniyu problemy avtonomnosti sistem upravleniya zhivotnovodcheskih proizvodstv // Vestnik VNIIMZH. 2015. № 3(17). S. 76–91.
  10. CHernoivanov V.I., Savchenkova I.P., Tolokonnikov G.K. Paradigma biomashsistem // Vestnik VNIIMZH. 2016. № 2(22). S. 56–61.
  11. CHernoivanov V.I. (red.) Biomashsistemy. Teoriya i prilozheniya / Pod red. akad. V.I. CHernoivanova. M.: Rosinformagrotekh. 2016. T. 1. 228 s. T. 2. 215 s.
  12. Tolokonnikov G.K. Vychislimye i nevychislimye fizicheskie teorii po R. Penrouzu. CH. 3. // Prikladnaya matematika, kvantovaya teoriya i programmirovanie. 2012. T. 9. № 4. S. 3–294.
  13. Tolokonnikov G.K. Perspektivy realizacii intellektual'nosti mashin na osnove bioblokov i sistem, porozhdayushchih algorifmy. S. 16–54 // V kn. «Intellektual'naya sel'skohozyajstvennaya tekhnika novogo pokoleniya» // Vestnik VNIIMZH. Prilozhenie k № 3(15). 2014. S. 3–65.
  14. Tolokonnikov G.K. Voprosy matematicheskogo obosnovaniya modelej biobloka i bloka Posta. Gipergrafovye konstrukcii // Trudy GOSNITI. 2016. T. 123. S. 116–126.
  15. Tolokonnikov G.K. Matematicheskie osnovy teorii biomashsistem // V kn. Biomashsistemy. Teoriya i prilozheniya. T. 1 / Pod red. akad. V.I. CHernoivanova. M.: Rosinformagrotekh. 2016. S. 31–205.
  16. Tolokonnikov G.K. Matematicheskaya kategornaya teoriya sistem // V kn. Biomashsistemy. Teoriya i prilozheniya. / Pod red. akad. V.I. CHernoivanova., M.: Rosinformagrotekh. 2016. T. 2. S. 42–151.
  17. Tolokonnikov G.K. Manifest: nejrografy, nejrokategorii i kategornye sklejki // Biomashsistemy. 2017. T. 1. № 1. S. 59–146.
  18. Red'ko V.G. Ot modelej povedeniya k iskusstvennomu intellektu. M.: Lenand. 2014. 447 s.
  19. Muhortov V.V., Hlebnikov S.V., Vityaev E.E. Uluchshennyj algoritm semanticheskogo veroyatnostnogo vyvoda v zadache 2-mernogo animata // Nejroinformatika. 2012. T. 6. № 1. S. 50–62.
  20. ZHdanov A.A. Avtonomnyj iskusstvennyj intellekt. M. 2012 g. 359 s.
  21. CHernoivanov V.I., Sudakov S.K., Tolokonnikov G.K. Biomashsistemy, funkcional'nye sistemy i ih kategornoe modelirovanie. Vestnik VNIIMZH. 2017. № 2(26). S. 32–43.
  22. CHernoivanov V.I., Sudakov S.K., Tolokonnikov G.K. Biomashsistemy i funkcional'nye sistemy na kategornoj osnove // Materialy IX Mezhdunarodnoj nauchno-prakticheskoj konferencii «InformAgro-2017». M.: Rosinformagrotekh. 2017. S. 279–286.
  23. CHernoivanov V.I., Sudakov S.K., Tolokonnikov G.K. Kategornaya teoriya sistem, funkcional'nyh sistem i biomashsistem // Sb. nauch. trudov Mezhdunarodnoj nauchno-tekhnicheskoj konferencii «Nejroinformatika 2017». CH. 1. T. 2. S. 131–138; ch 2. T. 2. S. 139–147.
  24. Lambek J., Scott P.J. Introduction to Higher Order Categorical Logic. Cambridge Press. 1986. 293 p.
  25. Barr M., Wells C. Category Theory for Computing Science, Canada. 2012. 538 p.
  26. Anohin K.V. Kognitom: v poiskah obshchej teorii kognitivnoj nauki // VI Mezhdunar. konferenciya po kognitivnoj nauke. Kalinigrad. 2014. S. 26–28.
  27. Szabo M.E. Polycategories. Comm. 1975. Algebra 3(8). P. 663–689.
  28. Garner R.H.G. «Polycategories via pseudo-distributive laws». Advances in Mathematics 218. 2008. P. 781–827.
  29. Mendel'son EH. Vvedenie v matematicheskuyu logiku. M. 1984.
  30. Hatcher W.S. The logical foundations of mathematics. Pergamon. 1982. 320 p.

© Издательство «РАДИОТЕХНИКА», 2004-2017            Тел.: (495) 625-9241                   Designed by [SWAP]Studio