Radiotekhnika
Publishing house Radiotekhnika

"Publishing house Radiotekhnika":
scientific and technical literature.
Books and journals of publishing houses: IPRZHR, RS-PRESS, SCIENCE-PRESS


Тел.: +7 (495) 625-9241

 

Development of a software for the semantic analysis of social media content

Keywords:

N.G. Yarushkina – Dr.Sc.(Eng.), Professor, Head of Department «Information Systems», Ulyanovsk State Technical University
E-mail: jng@ulstu.ru
V.S. Moshkin – Ph.D.(Eng.), Associate Professor, Department «Information Systems», Ulyanovsk State Technical University
E-mail: v.moshkin@ulstu.ru
A.A. Filippov – Ph.D.(Eng.), Associate Professor, Department «Information Systems», Ulyanovsk State Technical University
E-mail: al.filippov@ulstu.ru
G.Yu. Guskov – Post-graduate Student, Department «Information Systems», Ulyanovsk State Technical University
E-mail: guskovgleb@gmail.com
A.A. Romanov – Ph.D.(Eng.), Associate Professor, Department «Information Systems», Ulyanovsk State Technical University
E-mail: romanov73@gmail.com
A.M. Namestnikov – Ph.D.(Eng.), Associate Professor, Department «Information Systems», Ulyanovsk State Technical University
E-mail: nam@ulstu.ru


In the introduction to this article, the urgency of the task of developing methods for automated intellectual and sentimental analysis of text information of social media is substantiated. These methods allow for a short time to process large amounts of data and understand the meaning and emotional color of user messages and publications.
The first chapter describes the architecture and each functional module of the developed intellectual software for Opinion Mining social media.
The second chapter contains a description of the graph knowledge base of the ontology repository of the developed system.
The third chapter describes the original algorithm for translating the RDF/OWL ontology into a graphical knowledge base. Also all the entities of the data storage subsystem of the developed intellectual software system for Opinion Mining of social media are presented.
In concluding this scientific work, the results of the studies are summarized and the prospect of further scientific research in this field is evaluated.

References:
  1. Chetviorkin I., Loukachevitch N. Sentiment Analysis Track at ROMIP-2012. Computer linguistics and intellectual technologies. Computer linguistics and intellectual technologies: Dialogue-2013. Sat. scientific articles V. 2. P. 40−50.
  2. The Heart of the Elastic Stack. URL = https://www.elastic.co/products/elasticsearch (data obrashheniya 15.05.2018).
  3. García-Moya L., Anaya-Sanchez H., Berlanga-Llavori R.. Retrieving product features and opinions from customer reviews // IEEE Intelligent Systems. 2013. 28(3). P. 19−27.
  4. Key Trends to Watch in Gartner 2012 Emerging Technologies Hype Cycle. URL = http://www.forbes.com/sites/ gartnergroup/2012/09/18/key-trends-to-watch-in-gartner2012-emerging-technologies-hype-cycle 2 (data obrashheniya 15.05.2018).
  5. Gjoka M. et al. Practical recommendations on crawling online social networks // IEEE Journal on Selected Areas in Communications. 2011. V. 29. № 9. P. 1872−1892.
  6. Introducing the Neo4j Graph Platform. URL = https://neo4j.com (data obrashheniya 15.05.2018).
  7. Leskovec J., Faloutsos C. Sampling from large graphs // Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining. 2006. ACM. P. 631−636.
  8. MongoDB. For Giant ideas. URL = https://www.mongodb.com (data obrashheniya 15.05.2018).
  9. OWL Web Ontology Language Overview. URL = https://www.w3.org/TR/owl-features (data obrashheniya 15.05.2018).
  10. Resource Description Framework (RDF). URL = https://www.w3.org/RDF (data obrashheniya 15.05.2018).
  11. Pallis G., Zeinalipour-Yazti D., Dikaiakos M. Online Social Networks: Status and Trends. New Directions in Web Data Management 1 // Studies in Computational Intelligence. 2011. V. 331. P. 213−234.
  12. Pang B., Lee L., Vaithyanathan S. Thumbs up? Sentiment Classification using Machine Learning Techniques. 2002. P. 79−86.
  13. Representational state transfer. URL = https://en.wikipedia.org/wiki/ Representational_state_transfer (data obrashheniya 15.05.2018).
  14. Turney P. Thumbs Up or Thumbs Down? Semantic Orientation Applied to Unsupervised Classification of Reviews // Proceedings of the Association for Computational Linguistics. 2002. P. 417−424.
  15. Yarushkina N., Filippov A., Moshkin V. Development of the unified technological platform for constructing the domain knowledge base through the context analysis // Communications in Computer and Information Science. 2017. V. 754. P. 62−72.
  16. Antonova A., Solov'ev A. Ispol'zovanie metoda uslovny'x sluchajny'x polej dlya obrabotki tekstov na russkom yazy'ke. Komp'yuternaya lingvistika i intellektual'ny'e texnologii: «Dialog-2013» // Sb. nauch. statej. № 12 (19). M.: Izd-vo RGGU. 2013. S. 27−44.
  17. Pazel'skaya A., Solov'ev A. Metod opredeleniya e'moczij v tekstax na russkom yazy'ke // Sb. nauchny'x statej «Komp'yuternaya lingvistika i intellektual'ny'e texnologii «Dialog-2011». M.: Izd-vo RGGU. 2011. № 11(18). S. 510−523.
  18. Tarasov D. Glubokie rekurrentny'e nejronny'e seti dlya aspektno-orientirovannogo analiza tonal'nosti otzy'vov pol'zovatelej na razlichny'x yazy'kax // Po materialam ezhegodnoj Mezhdunar. konf. «Dialog». Doklady' speczial'ny'x sekczij. V 2 x tomax. M.: Izd-vo RGGU. 2015. T. 2. № 14(21). S. 53−64.
June 24, 2020
May 29, 2020

© Издательство «РАДИОТЕХНИКА», 2004-2017            Тел.: (495) 625-9241                   Designed by [SWAP]Studio