Radiotekhnika
Publishing house Radiotekhnika

"Publishing house Radiotekhnika":
scientific and technical literature.
Books and journals of publishing houses: IPRZHR, RS-PRESS, SCIENCE-PRESS


Тел.: +7 (495) 625-9241

 

Transition devices coupling transmit-receive module with radiating elements in X-band AESA

Keywords:

O.S. Alekseev – Head of Division, JSC V.Tikhomirov Scientific Research Institute of Instrument Design (Zhukovsky)
D.V. Bronnikov – Post-graduate Student, Department of Radiophysics, Antennas and Microwave Technics  of Moscow Aviation Institute (National Research University)
D.V. Bagno – Ph.D. (Eng.), Associate Professor, Department of Radiophysics, Antennas and Microwave Technics, Moscow Aviation Institute (National Research University)
E-mail: rw3fo@yandex.ru
A.E. Zaikin – Ph.D. (Eng.), Senior Research Scientist, Department of Radiophysics, Antennas and Microwave Technics, Moscow Aviation Institute (National Research University)
E-mail: antenna@mai.ru
E.V. Ilyin – Ph.D. (Eng.), Associate Professor, Department of Radiophysics, Antennas and Microwave Technics, Moscow Aviation Institute (National Research University)


This article discusses solutions of coupling of modern X-band AESA transmit-receive module (TRM), which is based on low-temperature co-fired ceramic (LTCC) technology, to rectangular waveguide-based radiating element [1,2]. A sample arrangement of AESA channel is depicted in fig. 2. It includes waveguide transition 2 supplied with ring conducting pads which is attached to squeezing multipin RF connector 3. Their assembly is placed between TRM 4 and the radiator 1 providing wideband RF matching and
T-wave to H10-wave conversion. To realize that, electromagnetic models of stripline-to-waveguide transitions (see figs. 3, 6, 8) and coaxial-to-waveguide transitions (see figs. 10–12) [9–14] are elaborated and studied using both FDTD and FEM numerical modelling [8]. The design is aimed to substrate integrated waveguides technology (SIW) [6,7]. Results of electromagnetic modeling are discussed stressing advantages and drawbacks of each solution. In particular, a stairwell in-line stripline-to-waveguide transition (fig. 6) provides low return loss (–28 dB) and insertion loss below 0,13 dB (this includes ohmic, dielectric and leakage losses) in 14% bandwidth, see fig. 7. Another promising electromagnetic model shown in fig. 12,a is transversal coaxial-to-waveguide transition with longitudinal copper-clad groove in PCB substrate, short-circuited SIW, short-circuited via (a probe) and ring pads. This transition is similar to a segment of ridged SIW excited by a short-cut probe. This transition demonstrates (see fig. 12,b) excellent return loss (–33 dB) and insertion loss better than 0,11 dB.

References:
  1. Sinani A. I. Novoe pokolenie bortovy'x aktivny'x fazirovanny'x antenny'x reshetok // Antenny'. № 8 (228). 2016. S. 37–43.
  2. Grinev A.Ju., Bagno D.V., Zajkin A.E., Il`in E.V., Sinani A.I., Mosejchuk G.F. Izluchayushhie e`lementy' sistemy' izlucheniya perspektivnoj AFAR X-diapazona // Antenny'. 2016. № 10 (230). S. 20–33.
  3. Galkina E.V., Ustinov D.P. Modul` MPP dlya AFAR X-diapazona // Radiolokaczionny'e sistemy' speczial`nogo i grazhdanskogo naznacheniya. 2013–2015 // Pod red. Ju.I. Belogo. M.: Radiotexnika. 2013. S. 168–174.
  4. Dalinger A.G., Iovdal`skij V.A., Shaczkij S.V., Novoselecz V.I. Konstrukcziya priemoperedayushhego modulya AFAR SVCh-diapazona // E`lektronnaya texnika. Ser. 1. SVCh-texnika. 2016. № 1 (528). S. 95–104.
  5. Gupta K.C., Ramesh Garg, Inder Bahl, Prakash Bhartia Microstrip Lines and Slotlines // 2nd ed. Norwood. MA.: Artech House. 1996.
  6. Bray J.R., Roy L. Resonant frequencies of post-wall waveguide // Proc. IEE Microw. Antennas Propag. 2003. V. 150. P. 365–368.
  7. Bronnikov D.V., Grinev A.Ju. Modelirovanie parametrov i xarakteristik volnovoda, integrirovannogo v podlozhku pechatnoj platy' // Tezisy' dokl. XII Molodyozhnoj nauch.-texnich. konf. «Radiolokacziya i svyaz` – perspektivny'e texnologii». OAO «Radiofizika». 2014. S. 31–33.
  8. Grinev A.Ju. Chislenny'e metody' resheniya prikladny'x zadach e`lektrodinamiki. M.: Radiotexnika. 2012.
  9. Hui-Wen Yao, Am Abdelmonem, Ji-Fuh Liang, Kawthar, A. Zaki Analysis and Design of Microstrip-to-Waveguide Transitions // IEEE Trans. Microwave Theory Tech. 1994. V. 42. № 12. P. 2371–2380.
  10. Zarba G., Bertin G., Besso P. An optimised waveguide to Microstrip transition at K band // Proc. 26th EuMC. 1996. V. 2. P. 836–838.
  11. Xiaobo Huang, Ke-Li Wu A Broadband U-slot Coupled Microstrip-to-Waveguide Transition // IEEE Trans. Microwave Theory Tech. 2012. V. 60. № 5. P. 1210–1217.
  12. Ao Liao, Qingyuan Wang, Baoxin Wang, Zheyu Wang Broad-band transition from a coaxial-line to a rectangular waveguide with reduced-height // Proc. International Conference on Microwave and Millimeter Wave Technology 2008 (ICMMT 2008). V. 1. P. 333–334.
  13. Mukherjee S., Chongder P., Srivastava K. V., Biswas A. Design of a broadband coaxial to substrate integrated waveguide (SIW) transition // Proc. Microw. Conf. (APMC). 2013. P. 896–898.
  14. Takafumi Kai, Jiro Hirokawa, Makoto Ando, Hiroshi Nakano, Yasutake Hirachi Wideband Coaxial-line Feed for Post-wall Waveguide in Millimeter Wave Band // Proc. of ISAP2005. Seoul. Korea. P. 1137–1140.
  15. Tavrizov A., Postnov S. Opy't obrabotki SVCh-materialov dlya PP // Texnologii v e`lektronnoj promy'shlennosti. 2010. № 5. S. 10–13.
June 24, 2020
May 29, 2020

© Издательство «РАДИОТЕХНИКА», 2004-2017            Тел.: (495) 625-9241                   Designed by [SWAP]Studio