Publishing house Radiotekhnika

"Publishing house Radiotekhnika":
scientific and technical literature.
Books and journals of publishing houses: IPRZHR, RS-PRESS, SCIENCE-PRESS

Тел.: +7 (495) 625-9241


Transition devices coupling transmit-receive module with radiating elements in X-band AESA


O.S. Alekseev – Head of Division, JSC V.Tikhomirov Scientific Research Institute of Instrument Design (Zhukovsky)
D.V. Bronnikov – Post-graduate Student, Department of Radiophysics, Antennas and Microwave Technics  of Moscow Aviation Institute (National Research University)
D.V. Bagno – Ph.D. (Eng.), Associate Professor, Department of Radiophysics, Antennas and Microwave Technics, Moscow Aviation Institute (National Research University)
A.E. Zaikin – Ph.D. (Eng.), Senior Research Scientist, Department of Radiophysics, Antennas and Microwave Technics, Moscow Aviation Institute (National Research University)
E.V. Ilyin – Ph.D. (Eng.), Associate Professor, Department of Radiophysics, Antennas and Microwave Technics, Moscow Aviation Institute (National Research University)

This article discusses solutions of coupling of modern X-band AESA transmit-receive module (TRM), which is based on low-temperature co-fired ceramic (LTCC) technology, to rectangular waveguide-based radiating element [1,2]. A sample arrangement of AESA channel is depicted in fig. 2. It includes waveguide transition 2 supplied with ring conducting pads which is attached to squeezing multipin RF connector 3. Their assembly is placed between TRM 4 and the radiator 1 providing wideband RF matching and
T-wave to H10-wave conversion. To realize that, electromagnetic models of stripline-to-waveguide transitions (see figs. 3, 6, 8) and coaxial-to-waveguide transitions (see figs. 10–12) [9–14] are elaborated and studied using both FDTD and FEM numerical modelling [8]. The design is aimed to substrate integrated waveguides technology (SIW) [6,7]. Results of electromagnetic modeling are discussed stressing advantages and drawbacks of each solution. In particular, a stairwell in-line stripline-to-waveguide transition (fig. 6) provides low return loss (–28 dB) and insertion loss below 0,13 dB (this includes ohmic, dielectric and leakage losses) in 14% bandwidth, see fig. 7. Another promising electromagnetic model shown in fig. 12,a is transversal coaxial-to-waveguide transition with longitudinal copper-clad groove in PCB substrate, short-circuited SIW, short-circuited via (a probe) and ring pads. This transition is similar to a segment of ridged SIW excited by a short-cut probe. This transition demonstrates (see fig. 12,b) excellent return loss (–33 dB) and insertion loss better than 0,11 dB.

  1. Sinani A. I. Novoe pokolenie bortovy'x aktivny'x fazirovanny'x antenny'x reshetok // Antenny'. № 8 (228). 2016. S. 37–43.
  2. Grinev A.Ju., Bagno D.V., Zajkin A.E., Il`in E.V., Sinani A.I., Mosejchuk G.F. Izluchayushhie e`lementy' sistemy' izlucheniya perspektivnoj AFAR X-diapazona // Antenny'. 2016. № 10 (230). S. 20–33.
  3. Galkina E.V., Ustinov D.P. Modul` MPP dlya AFAR X-diapazona // Radiolokaczionny'e sistemy' speczial`nogo i grazhdanskogo naznacheniya. 2013–2015 // Pod red. Ju.I. Belogo. M.: Radiotexnika. 2013. S. 168–174.
  4. Dalinger A.G., Iovdal`skij V.A., Shaczkij S.V., Novoselecz V.I. Konstrukcziya priemoperedayushhego modulya AFAR SVCh-diapazona // E`lektronnaya texnika. Ser. 1. SVCh-texnika. 2016. № 1 (528). S. 95–104.
  5. Gupta K.C., Ramesh Garg, Inder Bahl, Prakash Bhartia Microstrip Lines and Slotlines // 2nd ed. Norwood. MA.: Artech House. 1996.
  6. Bray J.R., Roy L. Resonant frequencies of post-wall waveguide // Proc. IEE Microw. Antennas Propag. 2003. V. 150. P. 365–368.
  7. Bronnikov D.V., Grinev A.Ju. Modelirovanie parametrov i xarakteristik volnovoda, integrirovannogo v podlozhku pechatnoj platy' // Tezisy' dokl. XII Molodyozhnoj nauch.-texnich. konf. «Radiolokacziya i svyaz` – perspektivny'e texnologii». OAO «Radiofizika». 2014. S. 31–33.
  8. Grinev A.Ju. Chislenny'e metody' resheniya prikladny'x zadach e`lektrodinamiki. M.: Radiotexnika. 2012.
  9. Hui-Wen Yao, Am Abdelmonem, Ji-Fuh Liang, Kawthar, A. Zaki Analysis and Design of Microstrip-to-Waveguide Transitions // IEEE Trans. Microwave Theory Tech. 1994. V. 42. № 12. P. 2371–2380.
  10. Zarba G., Bertin G., Besso P. An optimised waveguide to Microstrip transition at K band // Proc. 26th EuMC. 1996. V. 2. P. 836–838.
  11. Xiaobo Huang, Ke-Li Wu A Broadband U-slot Coupled Microstrip-to-Waveguide Transition // IEEE Trans. Microwave Theory Tech. 2012. V. 60. № 5. P. 1210–1217.
  12. Ao Liao, Qingyuan Wang, Baoxin Wang, Zheyu Wang Broad-band transition from a coaxial-line to a rectangular waveguide with reduced-height // Proc. International Conference on Microwave and Millimeter Wave Technology 2008 (ICMMT 2008). V. 1. P. 333–334.
  13. Mukherjee S., Chongder P., Srivastava K. V., Biswas A. Design of a broadband coaxial to substrate integrated waveguide (SIW) transition // Proc. Microw. Conf. (APMC). 2013. P. 896–898.
  14. Takafumi Kai, Jiro Hirokawa, Makoto Ando, Hiroshi Nakano, Yasutake Hirachi Wideband Coaxial-line Feed for Post-wall Waveguide in Millimeter Wave Band // Proc. of ISAP2005. Seoul. Korea. P. 1137–1140.
  15. Tavrizov A., Postnov S. Opy't obrabotki SVCh-materialov dlya PP // Texnologii v e`lektronnoj promy'shlennosti. 2010. № 5. S. 10–13.
June 24, 2020
May 29, 2020

© Издательство «РАДИОТЕХНИКА», 2004-2017            Тел.: (495) 625-9241                   Designed by [SWAP]Studio