Radiotekhnika
Publishing house Radiotekhnika

"Publishing house Radiotekhnika":
scientific and technical literature.
Books and journals of publishing houses: IPRZHR, RS-PRESS, SCIENCE-PRESS


Тел.: +7 (495) 625-9241

 

Theoretical issues and ways of practical implementation of adaptive systems for clutter compensation in impulse radars

Keywords:

B.М. Vovshin – Dr.Sc. (Eng.), Head of Department, Design Bureau of JSC «RPC «Lianozovo Electromechanical Plant»; Professor, Moscow Technical University (MIREA)
E-mail: boris@eleron.net
I.S. Vylegzhanin – Ph.D. (Phys.-Math.), Chief Engineer, Design Bureau of JSC «RPC «Lianozovo Electromechanical Plant»
E-mail: isv1980@yandex.ru
А.N. Korneev – Head of Sector, Design Bureau of JSC «RPC «Lianozovo Electromechanical Plant»
E-mail: akorneev@lemz.ru
V.V. Lavrukevich – Ph.D. (Eng.), Leading Engineer, Design Bureau of JSC «RPC «Lianozovo Electromechanical Plant»
E-mail: lvv.0xff@gmail.com
А.А. Pushkov – Ph.D. (Eng.), Senior Research Scientist, Design Bureau of JSC «RPC «Lianozovo Electromechanical Plant»
E-mail: minipooh@yandex.ru


The article is devoted to the theoretical basics of adaptive interperiod processing systems. The relationship between the optimal
linear Wiener filtering, filters of linear prediction and compensation of clutter in the radar is shown. The article considers the principles of whitening and inverse filters construction and their properties. The main attention was paid to the analysis of their physical meaning and extreme features. It is proved that the minimization of prediction errors is equivalent to maximizing the compensation of clutter while preserving the useful signal, which leads to an increase in signal-to-noise-plus-clutter ratio. It is shown that despite all the advantages of adaptive interperiod processing systems, their practical implementation is not widely used due to high computational costs. Ways of reducing the volume of calculations for practical implementation are discussed. It is shown that the computational structure obtained on the basis of the generalized Levinson factorization and called the elementary lattice filters can significantly reduce the computational cost. Practically implemented adaptive system of interperiod processing, which was used in semi-natural and natural experiments on real radar was shown.

References:
  1. Vovshin B.M., Vihlegzhanin I.S., Korneev A.N., Lavrukevich V.V., Pushkov A.A. Teoretiko-ehksperimentaljnoe sravnenie adaptivnihkh i tradicionnihkh ustroyjstv SDC v impuljsnihkh RLS // Uspekhi sovremennoyj radioehlektroniki. 2018. № 4. S. 40–56.
  2. Shirman Ya.D., Manzhos V.N. Teoriya i tekhnika obrabotki radiolokacionnoyj informacii na fone pomekh. M.: Radio i svyazj. 1981.
  3. Wiener N. Extrapolation, Interpolation and Smoothing of Stationary Time Series, with Engineering Application. New York: Wiley. 1949.
  4. Bode H.W., Shannon C.E. A simplified derivation of linear least squares smoothing and predication theory // Proc. IRE. 1950. V. 38. P. 417–425.
  5. Burg I.P. Maximum Entropy Spectral Analysis. Proc. 37th Meeting of the Society of Exploration Geophysicists. Oklahoma City, Okla. October, 1967.
  6. Burg I.P. A New Analysis Technique for Time Series Data. NATO Advanced Study Institute on Signal Processing with Emphasis on Underwater Acoustics. August, 1968.
  7. Levinson N. The Wiener RMS (root meansquare) error criterion in filter design and prediction // J. Math. Phys. 1947. V. 25. P. 261–278.
  8. Delsarte F. Mathematical Foundations of the Generalized Levinson algorithm // IEEE Conf. on Acoustic, Speech and Signal Processing, Paris. 1982. P. 1717–1720.
  9. Kramer G. Matematicheskie metodih statistiki. M.: Mir. 1975.
  10. Tikhonov V.I., Kharisov V.N. Statisticheskiyj analiz i sintez radiotekhnicheskikh ustroyjstv i sistem. M.: Radio i svyazj. 2004.
  11. Uidrou B., Stirnz S. Adaptivnaya obrabotka signalov / Per. s angl. M.: Radio i svyazj.1989.
  12. Repin V.G., Tartakovskiyj G.P. Statisticheskiyj sintez pri apriornoyj neopredelennosti i adaptaciya informacionnihkh sistem. M.: Sov. radio. 1977.
  13. Radioehlektronnihe sistemih. Osnovih postroeniya i teoriya: Spravochnik / Pod red. Ya.D. Shirmana. M.: Radiotekhnika. 2007.
  14. Adaptivnihe filjtrih / Pod red. K.F. Kouehna i P.M. Granta / Per. s angl. M.: Mir. 1988.
  15. Boks Dzh., Dzhenkins G. Analiz vremennihkh ryadov, prognoz i upravlenie: Per. s angl. // Pod red. V.F. Pisarenko. M.: Mir. 1974. Kn. 1.
  16. Marpl-ml. S.L. Cifrovoyj spektraljnihyj analiz i ego prilozheniya. M.: Mir. 1990.
  17. Papoulis A. Maximum Entropy and Spectral Estimation: A Review // IEEE Trans. Acoust. Speech Signal Process. December 1981. V. ASSP-29. P. 1176–1186.
  18. Lekhovickiyj D.I., Ryabukha V.P., Zhuga G.A. SDC v impuljsnihkh RLS: Fizicheskiyj smihsl i ehkstremaljnihe svoyjstva operaciyj optimaljnoyj mezhduperiodnoyj obrabotki gaussovihkh signalov na fone gaussovihkh passivnihkh pomekh // Prikladnaya radioehlektronika. 2008. T. 7. № 2. S. 109–123.
  19. Lekhovickiyj D.I., Kirillov I.G. Modelirovanie passivnihkh pomekh impuljsnihm RLS na osnove processov avtoregressii proizvoljnogo poryadka / Sistemih obrabotki informacii: Sb. nauch. stateyj. Kh: KhUPS. 2008. V. (3) 70. S. 30–101.
  20. Vovshin B.M., Zhuga G.A., Lavrukevich V.V., Lekhovickiyj D.I. Izvlechenie meteoinformacii na osnove spektraljnogo i korrelyacionnogo analiza otrazheniyj v impuljsnihkh dopplerovskikh meteorologicheskikh RLS // Prikladnaya radioehlektronika. 2007. T. 6. № 3. S. 21–40.
  21. Vovshin B.M., Lavrukevich V.V., Lekhovickiyj D.I., Semenyaka A.V. Issledovanie spektrov meteoobrazovaniyj parametricheskimi metodami spektraljnogo analiza // Trudih Mezhdunar. nauch.-praktich. konf. «Sovremennihe informacionnihe i ehlektronnihe tekhnologii». Odessa. 2012. S. 162–166.
  22. Streng G. Lineyjnaya algebra i ee prilozheniya / Per. s angl. M.: Mir. 1980.
  23. Bellman R. Vvedenie v teoriyu matric // M.: Nauka. 1976.
  24. Therrien S.W. On the Relation between Triangular Matrix Decomposition and linearPrediction // Proc. IEEE. December 1983. V. 71. P. 1459–1460,
  25. Voevodin V.V. Matricih i vihchisleniya. M.: Nauka. 1984.
  26. Prikladnaya radioehlektronika. Tematicheskiyj vihpusk, posvyathennihyj adaptivnoyj prostransvenno-vremennoyj obrabotke signalov / Pod red. D.I. Lekhovickogo. 2011. T. 10. №4.
  27. Lekhovickiyj D.I. Obobthennihyj algoritm Levinsona i universaljnihe reshetchatihe filjtrih // Izv. VUZov. Radiofizika. 1992. T. 35. № 9–10. S. 790–808.
  28. Lavrukevich V.V., Lekhovickiyj D.I., Zarickiyj V.I., Kirillov I.G. Novihe algoritmih rekurrentnoyj nastroyjki adaptivnihkh reshetchatihkh filjtrov // X yubil. MNK «Teoriya i tekhnika peredachi, priema i obrabotki informacii». Ch. 1. Kh.: KhNUREh. 2004. S. 201–202.
  29. Lekhovickiyj D.I., Zarickiyj V.I., Rakov I.D., Sverdlov B.G., Ratihnskiyj M.V. Metodih adaptivnoyj reshetchatoyj filjtracii v zadachakh prostranstvenno-vremennoyj obrabotki signalov // Preprint 8610. M.: RTI AN SSSR. 1987.
  30. Levin B.R. Teoreticheskie osnovih statisticheskoyj radiotekhniki. M.: Sov. radio. 1966. Kn. 1. 1968. Kn. 2.
  31. Lekhovytskiy D., Abramovich Y. Adaptive lattice filters for band-inverse (TVAR) covariance matrix approximations: theory and practical applications // Proceedings. IRS – 2009. Hamburg. Germany. 09–11 September 2009. P. 535–539.
  32. Miller M.I., Fuhrmann D.R., O’Sullivan J.A., Snyder D.L. Maximum-likelihood methods for Toeplitz covariance estimation and radar imaging. In S. Haykin, editor, Advances in Spectrum Analysis and Array Processing. Prentice-Hall. 1991. V. II. P. 145–172.
  33. Faddeev D.K., Faddeeva V.N. Vihchisliteljnihe metodih lineyjnoyj algebrih. Izd. 2-e. M.–L.: Fizmatgiz. 1963.
  34. Efremov V.S., Vihlegzhanin I.S., Lekhovickiyj D.I., Vovshin B.M., Lavrukevich V.V. Ehksperimentaljnihe ehnergeticheskie spektrih meteoobrazovaniyj v modernizirovannom meteoradiolokatore MRL-5 // Sb. trudov III Mezhdunar. radioehlektronnogo foruma «MRF-2008». Kharjkov. T. 1. S. 61–64.
  35. Vovshin B.M., Vihlegzhanin I.S., Korneev A.N., Lavrukevich V.V., Pushkov A.A. Rezuljtatih ehksperimentaljnihkh issledovaniyj svoyjstv i kharakteristik passivnihkh pomekh v impuljsnihkh RLS // Uspekhi sovremennoyj radioehlektroniki. 2018. № 2. S. 51–68.
  36. Laurukevich U., Pushkov A., Vylegzhanin I., Vovshin B., Lekhovytskiy D., Rachkov D. Estimation of energy, spectral and polarimetric characteristics of meteorological echoes in DMRL-C // Radar Symposium (IRS). Proceedings International Publication Year: 2011. P. 267–272.
  37. Lavrukevich V.V., Pushkov A.A. Ocenivanie spektraljnihkh kharakteristik meteoobrazovaniyj v perspektivnihkh DMRL // Trudih II Vseros. nauch.-tekhnich. konf. «Problemih voenno – prikladnoyj geofiziki i kontrolya sostoyaniya prirodnoyj sredih». 2012. T. 1. SPb.
  38. Lavrukevich V., Pushkov A., Vovshin B., Vylegzhanin I. The results of field tests of Russian meteorological radar «DMRL-C» // Trudih IV Mezhdunar. radioehlektronnogo foruma. Kharjkov. 18-21 oktyabrya 2011. T. 1. S. 7–12.
  39. Lavrukevich V.V., Lekhovickiyj D.I., Vovshin B.M., Zhuga G.A. Osobennosti zathitih sverkhshirokopolosnihkh RLS ot passivnihkh pomekh // Radiotekhnika. 2008. № 8.
  40. Sedleckiyj R.M., Vihlegzhanin I.S., Efremov V.S., Pushkov A.A., Lavrukevich V.V., Vovshin B.M. Osobennosti ispoljzovaniya slozhnihkh signalov v doplerovskikh meteoradiolokatorakh // Trudih VIII Mezhdunar. nauch.-praktich. konf. «Sovremennihe informacionnihe i ehlektronnihe tekhnologii». Odessa. 2012.

© Издательство «РАДИОТЕХНИКА», 2004-2017            Тел.: (495) 625-9241                   Designed by [SWAP]Studio