Radiotekhnika
Publishing house Radiotekhnika

"Publishing house Radiotekhnika":
scientific and technical literature.
Books and journals of publishing houses: IPRZHR, RS-PRESS, SCIENCE-PRESS


Тел.: +7 (495) 625-9241

 

Optical and dielectric properties of electrolytic silver films hybrid nanostructures

Keywords:

A.V. Tcibulnikova – Ph.D. (Phys.-Mat.), Research Scientist, Immanuel Kant Baltic Federal University (Kaliningrad)
E-mail: anna.tsibulnikova@mail.ru
V.A. Slezhkin – Ph.D. (Chem.), Associate Professor, Immanuel Kant Baltic Federal University (Kaliningrad)
E-mail: vslezhkin@mail.ru
E.I. Konstantinova – Post-graduate Student, Immanuel Kant Baltic Federal University (Kaliningrad)
E-mail: konstantinovaeliz@gmail.com
A.Y. Zybin – Junior Research Scientist, Immanuel Kant Baltic Federal University (Kaliningrad)
E-mail: azubin@mail.ru
V.V. Bryukhanov – Dr.Sc. (Phys.-Math.), Professor, Immanuel Kant Baltic Federal University (Kaliningrad)
E-mail: bryukhanov_v.v@mail.ru
I.G. Samusev – Ph.D. (Phys.-Math.), Deputy Director, Immanuel Kant Baltic Federal University (Kaliningrad)
E-mail: the_samusev@yahoo.com
K.Yu. Maksimova – Research Scientist, Immanuel Kant Baltic Federal University (Kaliningrad)
E-mail: KMaksimova@kantiana.ru


The technology of obtaining rough silver surfaces by electrochemical and physicochemical treatment is considered. The optical properties of the silver films surface of different roughness, modified with silver hydrosol nanoparticles, were studied by ellipsometry. An analysis is made of the dispersion dependences of the permittivity functions distribution of the rough silver surface, associated with the transverse modes of plasmon processes on the surface. The experimental results and model calculations of the dispersion functions of the permittivity of the resulting silver surfaces with different roughnesses made it possible to determine the forbidden band width of the surface oxide layer of the silver film. The magnitude of the forbidden band of the surface oxide layer varies significantly depending on the state of the surface roughness. The dependence of the forbidden band width of the oxide layer of the silver surface on the state of roughness is established.

References:
  1. Kanwarjeet K. Optical Biosensing Using Localized Surface Plasmon Resonance of Gold Nanoparticles. University of Waterloo, Ontario, Canada. 2011. 219 p.
  2. Homola J. Surface Plasmon resonance sensors for detection of chemical and biological species // Chemical Reviews. 2008. V. 108. P. 462–493.
  3. Sotnikov D.V., ZHerdev A.V., Dzantiev B.B. Detektsiya mezhmolekulyarnyh vzaimodejstvij, osnovannaya na registratsii poverhnostnogo plazmonnogo rezonansa // Uspekhi biologicheskoj himii. 2015. T. 55. C. 391–420.
  4. Lu G., Liu J., Zhang T., Shen H., Perriat P., Martini M., Tillement O., Gu Y., He Y., Wang Y., Gong Q. Enhancing molecule fluorescence with asymmetrical plasmonic antennas // Nanoscale. 2013. V. 14. Issue 14. P. 6545-6551. DOI: 10.1039/c3nr01306e.
  5. Qiao Q., Chong-Xin Shan, Zheng J., Bing-Hui Li, Zhen-Zhong Zhang, De-Zhen Shen. Surface plasmon enhanced ultraviolet light-emitting devices // Journal of Luminescence. 2013. V. 134. P. 754–757.
  6. Gaponenko S.V. Introduction to nanophotonics. Cambridge: Cambridge University Press, 2010. 716 p.
  7. Sarid D., Challener W. Modern Introduction to surface plasmons: theory, mathematica modeling and applications. New York: Cambridge University Press, 2010. 371 p.
  8. Klimov V.V. Nanoplazmonika. M.: Fizmatlit, 2009. 480 s.
  9. Maier A. Plasmonic Fundamentals and Application.UK: Springer, 2007. 221 p.
  10. Humphrey А.D, Barnes W.L. Plasmonic surface lattice resonances in arrays of metallic nanoparticle dimmers // Journal of Optics. 2016. V. 18. P. 035005.7.
  11. Govorov A.O., Lee J., Kotov N.A. Theory of plasmon-enhanced Forster energy transfer in optically excited semiconductor and metal nanoparticles // Physical Review B. 2007. V. 76. P. 125308.
  12. Kucherenko M.G. CHmereva T.M. Protsessy s uchastiem ehlektronno-vozbuzhdennyh molekul na poverhnostyah tverdyh adsorbentov. Orenburg: OGU, 2010. 344 s.
  13. Drachev V.P., Chettiar U.K., Kildishev A.V. Hsiao-Kuan Yuan, WenshanCai, Shalaev V.M. The Ag dielectric function in plasmonic metamaterials // OPTICS EXPRESS. 2008. V. 16. № 2. P. 1186.
  14. Rudenko S. P., Stetsenko M. A., Krishchenko I. M., Maksimenko L. S., Kaganovich EH. B., Serdega B.K. Poverhnostnye plazmony v plenkah poristogo zolota // Optika i spektroskopiya. 2016. T. 120. № 4. S. 569–575.
  15. Agranovich V.M., Mils D.L. Poverhnostnye polyaritony. EHlektromagnitnye volny na poverhnostyah i granitsy razdela sred. M.: Nauka. 1985. 525 s.
  16. Gerasimova G.A., Ionova G.V., Ionova I.S., Mihalko V.K. TSivadze A.YU. Plazmennye svojstva sfericheskih nanochastits i plenok serebra // Fizikohimiya poverhnosti i zashchita materialov. 2013. T. 49. № 2. S. 173–177.
  17. Brodskij A.M. Urbah M.I. Vliyanie mikroskopicheskoj struktury poverhnostej metallov na ih opticheskie svojstva // Uspekhi fizicheskih nauk. 1982. T. 138. Vyp. 3. S. 413–453.
  18. Brodskij A.M. Urbah M.I. Optika sherohovatyh poverhnostej metallov // ZHurnal ehksperimental'noj i teoreticheskoj fiziki. 1985. T. 89. Vyp. 2(8). S. 680.
  19. Konstantinova E.I., Zyubin A.U., Slezhkin V.A. Samusev I.G., Bryukhanov V.V. International Conference of Photonics and Information Optics Journal of Physics: Conference Series. 2016. V. 737. P. 012037.
  20. Johnson P.B., Christy R.W. Optical Constant of the Noble Metals // Physical Review B. 1972. V. 6. № 12. P. 4370–4379.
  21. Ford G.W., Weber W.H. Electromagnetic interactions of molecules with metal surfaces // Physics Reports. 1984. V. 113. № 4. P. 195–287.
  22. Novohotnyj L., Hekht B. Osnovy nanooptiki. M.: Fizmatlit, 2009. 484 s.
  23. Man-Il Kang, Sok Won Kim, Yong-Gi Kim, Ji-Wook Ryu. Dependence of the optical anisotropy of ZnO thin films on the structural properties // Journal of the Korean Physical Society. 2010. V. 57. № 2. P. 389–394.
  24. Ajgen M., Mejer L. Teoreticheskie osnovy relaksatsionnoj spektroskopii // Metody issledovaniya bystryh reaktsij. M.: Mir. 1977. S. 79–172.
  25. Chen Ying-Jui, Chiang Yun-Wei, Huang Michael H. Synthesis of Diverse Ag2O Crystals and Their Facet-Dependent Photocatalytic Activity Examination // ACS Applied Matererials & Interfaces. 2016. V. 8. № 30. P. 19672–19679.
  26. Kumar H., Rani R. Structural Characterization of Silver Nanoparticles Synthesized by Micro emulsion Route International Journal of Engineering and Innovative Technology // IJEIT. 2013. V. 3. Is. 3. P. 344348.
  27. Thin Films Materials Science Consultant. Handbook of ellipsometry / Ed. by H.G. Tompkins. Copyright by William Andrew. 2005. P. 891.
  28. Kurbatskij V.P., Korotun A.V., Babich A.V., Pogosov V.V. EHnergiya Fermi i opticheskaya provodimost' kvantovyh metallicheskih nitej / Fizika tverdogo tela. 2009. T. 51. Vyp. 12. S. 2371–2378.
June 24, 2020
May 29, 2020

© Издательство «РАДИОТЕХНИКА», 2004-2017            Тел.: (495) 625-9241                   Designed by [SWAP]Studio