Radiotekhnika
Publishing house Radiotekhnika

"Publishing house Radiotekhnika":
scientific and technical literature.
Books and journals of publishing houses: IPRZHR, RS-PRESS, SCIENCE-PRESS


Тел.: +7 (495) 625-9241

 

Influence of field electron emission from the cathode with a thin insulating film on minimum ignition voltage of low current gas discharge

Keywords:

V.I. Kristya – Dr.Sc.(Phys.-Math.), Professor, Kaluga branch of the Bauman MSTU
E-mail: kristya@bmstu-kaluga.ru
E.V. Vershinin – Ph.D.(Phys.-Math.), Associate Professor, Kaluga branch of the Bauman MSTU
E-mail: yevgeniyv@mail.ru
Myo Thi Ha – Post-graduate Student, Kaluga branch of the Bauman MSTU
E-mail: myothiha53@gmail.com


An important characteristic of gas discharge devices, such as illuminating lamps, plasma displays, gas lasers, is the discharge ignition voltage. Its reduction results in a decrease of the intensity of cathode sputtering and in an increase of the device service time due to a reduction of energies of ions, bombarding the cathode surface. Value of the ignition voltage depends substantially on the cathode effective secondary electron emission yield, which is equal to average number of electrons emitted per a falling ion. A method of re-duction of the discharge ignition voltage consists in formation of a thin insulating film on the cathode. When the current flows in the interelectrode gap, positive charges are accumulated on its surface. They generate the electric field in insulator, sufficient for existence of the field electron emission from the electrode metal substrate into the film. A fraction of such electrons can overcome the potential barrier at the dielectric outer boundary and go out into the discharge volume, increasing the cathode effective secondary emission yield.
In this work, a model of low current gas discharge in flat interelectrode gap under the presence of a thin insulating film on the cathode is developed. Dependence of the cathode effective secondary electron emission yield and the discharge ignition voltage on the film emission efficiency equal to the fraction of electrons emitted into the film, which goes out of the film, is investigated. It is shown that formation of a thin oxide film on the cathode of a gas discharge device can result in a considerable decrease of its discharge ignition voltage.

References:
  1. Rajzer Yu.P. Fizika gazovogo razryada. Dolgoprudny’j: ID «Intellekt». 2009. 736 s.
  2. Kristya V.I., Fisher M.R. Vliyanie e’missionny’x svojstv e’lektroda i temperatury’ gaza na napryazhenie zazhiganiya razryada v smesi argona s parami rtuti // Izvestiya RAN. Ser. Fizicheskaya. 2012. T. 76. № 5. S. 673−677.
  3. Kristya V.I., Tun Je.N. Vliyanie oksidnoj plenki na poverxnosti katoda na e’nergeticheskie raspredeleniya ionov i by’stry’x atomov v tleyushhem razryade // Poverxnost’. Rentgenovskie, sinxrotronny’e i nejtronny’e issledovaniya. 2015. № 3. S. 74−80.
  4. Phelps A.V., Petrović Z.Lj. Cold-cathode discharges and breakdown in argon: surface and gas phase production of secondary electrons // Plasma Sources Science and Technology. 1999. V. 8. № 3. P. R21−R44.
  5. Go D.B., Pohlman D.A. A mathematical model of the modified Paschen’s curve for breakdown in microscale gaps // Journal of Applied Physics. 2010. V. 107. № 10. 103303.
  6. Rumbach P., Go D.B. Fundamental properties of field emission-driven direct current microdischarges // Journal of Applied Physics. 2012. V. 112. № 10. 103302.
  7. Venkattraman A., Alexeenko A.A. Scaling law for direct current field emission-driven microscale gas breakdown // Physics of Plasmas. 2012. V. 19. № 12. 123515.
  8. Moon K.S., Lee J., Whang K.-W. Electron ejection from MgO thin films by low energy noble gas ions: Energy dependence and initial instability of the secondary electron emission coefficient // Journal of Applied Physics. 1999. V. 86. № 7. P. 4049−4051.
  9. Stamenković S.N., Marković V.Lj., Gocić S.R., Jovanović A.P. Influence of different cathode surfaces on the breakdown time delay in neon DC glow discharge // Vacuum. 2013. V. 89. P. 62−66.
  10. Anders A. Physics of arcing, and implications to sputter deposition // Thin Solid Films. 2006. V. 502. P. 22−28.
  11. Aitov R.D., Korzhavy’j A.P., Kristya V.I. E’missionny’e svojstva xolodny’x katodov s oksidnoj plenkoj na poverxnosti dlya otpayanny’x gazorazryadny’x priborov // Obzory’ po e’lektronnoj texnike. Ser. 6. Materialy’. 1991. № 5(1612). S. 1−48.
  12. Bondarenko G.G., Korzhavy’j A.P. Vliyanie oksidirovaniya poverxnosti na strukturu i svojstva metallicheskix xolodny’x katodov // Izvestiya VUZov. Ser. Fizika. 2007. № 2. S. 27−34.
  13. Forbes R.G. Use of a spreadsheet for Fowler-Nordheim equation calculations // Journal of Vacuum Science and Technology B. 1999. V. 17. № 2. P. 534−541.
  14. Hickmott T.W. Polarization and Fowler–Nordheim tunneling in anodized Al–Al2O3–Au diodes // Journal of Applied Physics. 2000. V. 87. № 11. P. 7903−7911.
  15. Suzuki M., Sagawa M., Kusunoki T., Nishimura E., Ikeda M., Tsuji K. Enhancing electron-emission efficiency of MIM tunneling cathodes by reducing insulator trap density // IEEE Transactions: Electron Devices. 2012. V. 59. № 8. P. 2256−2262.
  16. Bondarenko G.G., Kristya V.I., Savichkin D.O. Vliyanie polevoj e’lektronnoj e’missii iz katoda s die’lektricheskoj plenkoj na xarakteristiki normal’nogo tleyushhego razryada // Izvestiya VUZov. Ser. Fizika. 2017. T. 60. № 2. S. 129−134.

© Издательство «РАДИОТЕХНИКА», 2004-2017            Тел.: (495) 625-9241                   Designed by [SWAP]Studio