Radiotekhnika
Publishing house Radiotekhnika

"Publishing house Radiotekhnika":
scientific and technical literature.
Books and journals of publishing houses: IPRZHR, RS-PRESS, SCIENCE-PRESS


Тел.: +7 (495) 625-9241

 

Comparative electrodynamical analysis and optimization of radially inhomogeneous cylindrical absorbing elements

Keywords:

Ya.I. Chizhevskaya – Student, Moscow Institute of Physics and Technology (State University)
E-mail: yana.chizhevskaya@phystech.edu
O.N. Smolnikova – Ph.D.(Eng.), Associate Professor, Moscow Aviation Institute (National Research University);
Head of Department, PJSC «Radiofizika» (Moscow)
E-mail: smon2012@mail.ru
S.P. Skobelev – Dr.Sc.(Phys.-Math.), Leading Research Scientist, PJSC «Radiofizika» (Moscow); Associate Professor, Moscow Institute of Physics and Technology (State University)
E-mail: s.p.skobelev@mail.ru


An absorbing element in the form of a two-layer dielectric cylinder with losses in the core having both constant and linear profiles, as well as a cylinder with losses both in the shell and in the core are considered. The cylinders are assumed to be excited by a field of an E polarized plane wave. Solution of the problem of scattering and absorption is solved with using the hybrid projection method. The algorithms developed in the work are realized in MATLAB codes used for comparative analysis of absorption efficiency for the cylinders with various values of parameters, as well as for calculation of the field inside the cylinders. It is shown that high absorption efficiency for the cylinder with lossless shell can be achieved only for relatively large values of the outer radius. The use of a shell with losses allows obtaining high absorption efficiency at relatively smaller values of the radius. The results obtained for the two-layer absorbing cylinders are compared to the results also obtained in the work for an absorber in the form of a lossy cylindrical Luneburg-Gutman lens providing even higher absorption efficiency.

References:
  1. Narimanov E.E., Kildishev A.V. Optical black hole: Broadband omnidirectional light absorber // Applied Physics Letters. 2009. V. 95. P. 041106.
  2. Cheng Q., Cui T.J., Jiang W.X., Cai B.G. An omnidirectional electromagnetic absorber made of metamaterials // New Journal of Physics. 2010. V. 12. P. 063006.
  3. Kildishev A.V., Prokopeva L.J., Narimanov E.E. Cylinder light concentrator and absorber: theoretical description // Optics Express. 2010. V. 18. № 16. P. 16646−16662.
  4. Lu W., Jin J.-F., Lin Z., Chen H. A simple design of an artificial electromagnetic black hole // Journal of Applied Physics. 2010. V. 108. P. 064517.
  5. Wang H.-W., Chen L.-W. A cylindrical optical black hole using graded index photonic crystals // Journal of Applied Physics. 2011. V. 109. P. 103104.
  6. Gabdullina A.R., Smol’nikova O.N., Skobelev S.P. Nekotory’e osobennosti e’lektromagnitnogo rasseyaniya na radial’no neodnorodny’x czilindrax s polozhitel’ny’m i otriczatel’ny’m pokazatelem prelomleniya // Radiotexnika. 2017. № 10. S. 18−29.
  7. Gutman A.S. Modified Luneberg lens // Journal of Applied Physics. 1954. V. 25. № 7. P. 855−859.
  8. Zajczev V.F., Polyanin F.D. Spravochnik po oby’knovenny’m differenczial’ny’m uravneniyam. M.: Fizmatlit. 2001.
  9. Skobelev S.P., Yaparova A.A. Gibridny’j proekczionny’j metod analiza volnovodny’x reshetok s vy’stupayushhimi die’lektricheskimi e’lementami. Dvumerny’e zadachi // Radiotexnika i e’lektronika. 2007. T. 52. № 3. S. 311−321.
  10. Balanis C.A. Advanced engineering electromagnetics. N.Y.: Wiley. 1989.
  11. Boren K., Xafmen D. Pogloshhenie i rasseyanie sveta maly’mi chasticzami. M.: Mir. 1986.
  12. Yanke E’., E’mde F., Lesh F. Speczial’ny’e funkczii. M.: Nauka. 1964.
  13. Bohren C.F. How can a particle absorb more than the light incident on it? // Amer. J. Phys. 1983. V. 51. № 4. P. 323−327.
June 24, 2020
May 29, 2020

© Издательство «РАДИОТЕХНИКА», 2004-2017            Тел.: (495) 625-9241                   Designed by [SWAP]Studio