Radiotekhnika
Publishing house Radiotekhnika

"Publishing house Radiotekhnika":
scientific and technical literature.
Books and journals of publishing houses: IPRZHR, RS-PRESS, SCIENCE-PRESS


Тел.: +7 (495) 625-9241

 

Modeling of the thermodynamic stability of the bimetallic nanocluster particles CuAu

Keywords:

E.A. Kartavykh ‒ Research Scientist, Khakas State University named after N.F. Katanova (Abakan, Russia)
Е-mail: bayd_vs@mail.ru
V.A. Cura ‒ Research Scientist, Khakas State University named after N.F. Katanova (Abakan, Russia)
Е-mail: bayd_vs@mail.ru
V.S. Beidyshev ‒ Ph.D. (Phys.-Math.), Associate Professor,  Khakas State University named after N.F. Katanova (Abakan, Russia)
Е-mail: bayd_vs@mail.ru


The properties of bimetallic nanoclusters CuAu particles under thermal influence have been studied by methods of molecular-dynamic modeling. It is shown that the alloying of Cu nanoclusters by Au atoms allows to control the emerging structure of nanoparticles and the value of their melting point. In the case of small metal clusters Cu and Au, it is possible to form clusters with a fivefold symmetry in nanosystems. The structural transition of CuAu nanoclusters into the icosahedral phase with increasing melting point as a linear function of increasing concentration is established. The cluster phase remains stable and has a linear decrease in the melting temperature with an increase in the concentration of gold atoms.

References:
  1. Zeng H., Sun S., Li J., Wang Z.L., Liu J.P. Tailoring magnetic properties of core∕shell nanoparticles // Applied physics letters. 2004. V. 85. № 5. P. 792-794.
  2. Major K.J., De C., Obare S.O. Recent advances in the synthesis of plasmonic bimetallic nanoparticles // Plasmonics. 2009. V. 4. № 1. P. 61-78.
  3. Najafishirtari S., Kokumai T.M., Marras S., Destro P., Prato M., Scarpellini A. Dumbbell-like Au0.5Cu0.5@Fe3O4 Nanocrystals: Synthesis, Characterization, and Catalytic Activity in CO Oxidation // ACS Applied Materials & Interfaces. 2016. V. 8. № 42. P. 2862428632.
  4. Rodriguez-Fernandes D., Liz-Marzán L.M. Metallic Janus and patchy particles // Particle & Particle Systems Characterization. 
  5. Iwai H., Umeki T., Yokomatsu M., Egawa C. Methanol partial oxidation on Cu–Zn thin films grown on Ni (100) surface // Surface Science. 2008. V. 602. № 14. P. 25412546.
  6. Bond G.C., Louis C., Thompson D.T. Catalysis by gold. World Scientific. 2006. V. 6. 361 p.
  7. Corma A., Garcia H. Supported gold nanoparticles as catalysts for organic reactions // Chemical Society Reviews. 2008. V. 37. № 9. P. 2096-2126.
  8. Hori Y. Electrochemical CO2 reduction on metal electrodes // Modern aspects of electrochemistry. Springer New York. 2008. P. 89-189.
  9. Wang X.A., Zhuang J., Peng Q., Li Y. General strategy for nanocrystal synthesis // Nature. 2005. V. 437. № 7055. P. 121-124.
  10. Wang H., Chen L., Feng Y., Chen H. Exploiting core–shell synergy for nanosynthesis and mechanistic investigation // Accounts of chemical research. 2013. V. 46. № 7. P. 16361646.
  11. Couillard M., Pratontep S., Palmer R.E. Metastable ordered arrays of size-selected Ag clusters on graphite // Applied physics letters. 2003. V. 82. № 16. P. 25952597.
  12. Grammatikopoulos P., Steinhauer S., Vernieres J., Singh V., Sowwan M. Nanoparticle design by gas-phase synthesis //Advances in Physics: X. 2016. Т. 1. № 1. С. 81100.
  13. Cheng D., Huang S., Wang W. Thermal behavior of core-shell and three-shell layered clusters: Melting of Cu1Au54 and Cu12Au54 // Phys. Rev. B. 2006. 74. P. 064117 1–11.
  14. Foiles, S.M. Embedded-atom-method function for the fcc metals Cu, Ag, Au, Ni, Pd, Pt and their alloys // Physical Review B. 1986. V. 33. № 12. P. 7983-7991.
  15. Sankaranarayanan S.K.R.S., Bhethanabotla V.R., Joseph B. Molecular dynamics simulation study of the melting of Pd-Pt nanoclusters // Physical Review B. 2005. Т. 71. № 19. С. 195415.

© Издательство «РАДИОТЕХНИКА», 2004-2017            Тел.: (495) 625-9241                   Designed by [SWAP]Studio