Publishing house Radiotekhnika

"Publishing house Radiotekhnika":
scientific and technical literature.
Books and journals of publishing houses: IPRZHR, RS-PRESS, SCIENCE-PRESS

Тел.: +7 (495) 625-9241


Magnetic read-write heads: materials, technologies, perspectives


V.G. Shadrov – Ph.D. (Phys.-Math.), Leading Research Scientist, Scientific-Practical Materials Research Centre
A.E. Dmitrieva – Junior Research Scientist, Scientific-Practical Materials Research Centre
A.V. Boltushkin – Ph.D. (Phys.-Math.), Leading Research Scientist, Scientific-Practical Materials Research Centre

The development of production technologies for magnetic read-write heads, which include various areas of materials science, elec-tronics, spinning, metrology, etc., largely explains the increase in the capacity of magnetic storage devices in recent years. The creation of new magnetic materials, the use of nanostructuring methods in their manufacture allows to increase both the efficiency of the recording elements of the heads and the sensitivity of the reading elements, which contributes to the solution of the «trilemma» sig-nal/noise-thermal stability-recording field. In this paper, we analyze the main parameters of magnetic read-write heads, production technologies, the use of magnetic materials, as well as alternative concepts of magnetic recording.
It is shown that the main problems of further miniaturization of recording heads are the limitations of resolution of lithographic methods (the difficulty of scaling the head-carrier gap), and also the maximum achievable recording field that limits the use of media with large coercive force to overcome the superparamagnetic limit. The main material of the magnetic cores of the recording heads at room temperature, as before, are FeCo alloys, which is due to the successful combination of high Ms with magnetic softness and high initial susceptibility. Potential candidate materials in terms of Ms magnification are α'' – Fe16N2 thin films, epitaxial ultrathin film systems Fe / NM, FeCo / Pd, FeCo, α'' – Fe16N2, as well as Dy / Cr / Fe70 Co30 or Tb / Cr / Fe70Co30.
The implementation of the technology of thermoassisted magnetic recording places high demands on the value of the Curie temperature and the initial magnetic permeability of the magnetic core, to the device and materials of the near-field converter. Insufficient
reliability of existing heat-recording devices associated with heating, as well as the need for a significant change in the existing
recording technology and a significant increase in cost, create certain advantages of microwave assisted magnetic recording technology using a spin-transfer nano-oscillator. Along with the search for materials alternative to CoFe and the use of alternative recording technologies, it may be promising to replace inductive heads with capacitive magnetoelectric elements, as well as the possibility of obtaining large recording fields due to opto-magnetic reversal of magnetic media.
The possibilities for further improvement of the reading heads are determined by the possibility of reducing the gap, increasing the magnetosuppression and the absolute value of the resistance. It is of interest to use more sensitive TMR sensors based on CoFeB / MgO / CoFeB structures, new geometry of GMR sensors (CPR–GMR) and synthetic ferrimagnetic fixed layers, GMR sensors based on Heusler alloys, and the use of two-dimensional magnetic recording technology with several reading elements.

  1. Stamps R., Breitkreuts S., Akerman J., Chumak A., Otari Y. et al. The 2014 magnetism roadmap // J. Phys. D.: Appl. Phys. 2014. V. 47. P. 333001-1-28.
  2. Plumer M.L., Cain W.C. New paradigms in magnetic recording // Physics in Canada. 2011. V. 67. P. 25–29.
  3. Richter H.J. The transition from longitudinal to perpendicular recording // J. Phys. D.: Appl. Phys. 2007. V. 40. P. R149–177.
  4. Wang F., Xu X.-H. Writability issues in high-anisotropy perpendicular magnetic recording media // Chin. Phys. B. 2014. V. 23. P. 036802-1-12.
  5. Shadrov V.G., Dmitrieva A.Je., Boltushkin A.V. Superparamagnitnyj predel i termostabil'nost' sred magnitnoj zapisi // Uspehi sovremennoj radiojelektroniki. 2015. № 12. С. 67–76.
  6. Kief M.T., Inturi V., Benakli M., Tabakovic I., Sun M., Heinonen O., Riemer S., Vas'ko V. High magnetic saturation poles for advanced perpendicular writers // IEEE Trans. Magn. 2008. V. 44. P. 113–118.
  7. Scheunert G., Heinonen O., Hardeman R., Lapicki A., Gubbins M., Bowman R.M. A review of high magnetic moment thin films for microscale and nanotechnology applications // Appl. Phys. Rev. 2016. V. 3. P. 011301-1-44.
  8. Kryder M.H., Gage E.C., McDaniel T.W., Challener W.A., Rottmayer R.E., Ju G., Hsia Y.-T., Erden M.F. Heat assisted magnetic recording // Proc. IEEE. 2008. V. 96. P. 1810–1835.
  9. Zhu J. G., Zhu X., Tang Y. Microwave assisted magnetic recording // IEEE Trans. Magn. 2008. V. 44. P. 125–131.
  10. Chaudhary R., Kansal A. A perspective on the future of the magnetic hard disk drive technology // Int. J. Tech. Res. Applications. 2015. V. 3. P. 63–74.
  11. Wood R., Williams M., Kavcic A., Miles J. The feasibility of magnetic recording at 10 Tb/inch2 on conventional media // IEEE Trans. Magn. 2009. V. 445. P. 917–923.
  12. Kikitsu A. Prospects for bit patterned media for high-density magnetic recording// J. Magn. Magn. Mater. 2009. V. 321. P. 526–530.
  13. Wang S., Wang Y., Victora R.H. Shingled magnetic recording on bit patterned media at 10 Tb/in2 // IEEE Trans. Magn. 2013. V. 49. P. 3644–3647.
  14. Suess D., Vogler C., Abert C., Bruckner F., Windl R., Breth L. Fundamental limits in heat-assisted magnetic recording and methods to overcome it with exchange spring structures // J. Appl. Phys. 2015. V. 117. P. 163913-1-4.
  15. Khizroev S., Litvinov D. Perpendicular magnetic recording: Writing process // J. Appl. Phys. 2004. V. 95. P. 4521–4537.
  16. Gao K.Z., Heinonen O., Chen Y. Read and write processes, and head technology for perpendicular recording // J. Magn. Magn. Mater. 2009. V. 321. P. 495–507.
  17. Noma K., Matsuoka M., Kanai H., Nomura K., Awaji N. Ultra-high magnetic moment films for write head // IEEE Trans. Magn. 2006. V. 42. P. 140–143.
  18. Cooper E.I., Bonhote C., Heidmann J., Hsu Y. et al. Recent developments in high-moment electroplated materials for recording heads // IBM J. Res. Dev. 2005. V. 49. P. 103–126.
  19. Wang S., Wei D., Gao K.-Z. Initial permeability and dynamic response of FeCo write pole // IEEE Trans. Magn. 2010. V. 46. P. 1951–1954.
  20. Brankovic S.R., Yang X., Klemmer T.J., M. Seigler M. Pulse electrodeposition of 2.4 T Co37Fe63 alloys at nanoscale for magnetic recording application // IEEE Trans. Magn. 2006. V. 42. P. 132–139.
  21. Vopsaroiu M., Georgieva M., Grundy P.J., Fernandez G.V., Manzoor S., Thwaites M.J., O'Grady K. Preparation of high moment CoFe films with controlled grain size and coercivity // J. Appl. Phys. 2005. V. 97. P. 303–307.
  22. Okada Y., Hoshiya H., Okada T., Fuyama M. Magnetic properties of FeCo multilayered films for single pole heads // IEEE Trans. Magn. 2004. V. 40. P. 2368–2370.
  23. Skorvanek I., Marcin J., Turcanova J., Kovac J., Svec P. FeCo based soft magnetic nanocrystalline alloys // Acta Electrotech. Inf. 2010.V. 10. P. 14–21.
  24. Inturi V., Yin H., Kief M., Hadley M., C. Mathieu C. Practical FeC films for perpendicular writer pole // IEEE Trans. Magn. 2012. V. 48. P. 1718–1721.
  25. Atiq S., Ko H.S., Siddiqi S.A., Shin S.-C. Preparation and the influence of Co, Pt and Cr additions on the saturation magnetization of α″-Fe16N2 thin films // J. Alloys Compd. 2009. V. 479. P. 755–758.
  26. Bhattacharyya S. Iron nitride family at reduced dimensions: A review of their synthesis protocols and structural and magnetic properties // J. Phys. Chem. C 2015. V. 119. P. 1601–1622.
  27. Zulhijah R., Nandiyanto A.B.D., Ogi T., Iwaki T., Nakamura K., Okuyama K. Effect of oxidation on α″-Fe16N2 phase formation from plasma-synthesized spherical core-shell α-Fe/Al2O3 nanoparticles // J. Magn. Magn. Mater. 2015. V. 381. P. 89–98.
  28. Dirba I., Komissinskiy P., Gutfleisch O., Alff L. Increased magnetic moment induced by lattice expansion from α-Fe to α0-Fe8N // J. Appl. Phys. 2015. V. 117. P. 173911-1-5.
  29. Sims H., Butler W.H., Richter M., Koepernik K., Oglu E.S., Friedrich C., Blugel S. Theoretical investigation into the possibility of very large moments in Fe16N2 // Phys. Rev. B 2012. V. 86. P. 174422-1-5.
  30. Vaz C.A.F., Bland J.A.C., Lauhoff G. Magnetism in ultrathin film structures // Rep. Prog. Phys. 2008. V. 71. P. 056501-1-6.
  31. Zoto I., Mankey G. Magnetic properties of coupled Gd/Pd/Ni thin Films // Bull. Am. Phys. Soc. 2006. V. R23. P. 7–14.
  32. Cheng L., Altounian Z., Ryan D.-H., Stroem-Olsen J.O., Sutton M. Pd polarization and interfacial moments in Pd-Fe multilayers // Phys. Rev. B 2004. V. 69. P. 144403-1-7.
  33. Scheunert G., Ward C., Hendren W.R., Bowman R.M. Magnetization of 2.6T in gadolinium thin films // Appl. Phys. Lett. 2012. V. 101. P. 142407-1-4.
  34. Dhar S., Brandt O., Ramsteiner M., Sapega V.F., Ploog K.H. Colossal magnetic moment of Gd in GaN // Phys. Rev. Lett. 2005. V. 94. P. 037205-1-5.
  35. Cowley R.A., Bryn-Jacobsen C., Simpson J.A., McMorrow D.F., Ward R.C., Wells M.R. The unusual phase diagram of the magnetic structures of holmiumerbium alloys // J. Magn. Magn. Mater.1998. V. 177–181. P. 1012–1014.
  36. Scheunert G., Hendren W.R., Lapicki A.A., Hardeman R., Gubbins M., Bowman R.M. Improved magnetization in sputtered dysprosium thin films // J. Phys. D: Appl. Phys. 2013. V. 46. P. 152001-1-7.
  37. Gutfleisch O., Willard M.A., Bruck E., Chen C.H., Sankar S.C., Liu J.P. Magnetic materials and devices for the 21st century: stronger, lighter and more energy efficient // Adv. Mater. 2011. V. 23. P. 821–842.
  38. Ward C., Scheunert G., Hendren W.R., Bowman R.M. Realizing the high moment in Fe/Cr/Gd: The role of the rare earth // Appl. Phys.Lett. 2013. V. 102. P. 092403-1-4.
  39. Scheunert G., Ambrose T.A., Hendren W.R, Lapicki A.A.,Egan P., Hardeman R., Gubbins M., Bowman R.M. Ferromagnetism in DyRh and DyRhX (X-Fe, Ni, Co, Gd) thin films // J. Phys. D: Appl. Phys. 2014. V. 47 (48). 485002-1-6.
  40. Drovosekov A.B., Kreines N.M., Savitsky A.O. et al. Interlayer coupling in Fe/Cr/Gd multilayer structures // J. Exp. Theor. Phys. 2015. V. 120. P. 1041–1054.
  41. McFadyen I.R., Fullerton E.E., Carey M.J. State-of-the-art magnetic hard disc drives // MRS Bull. 2006. V. 31. P. 379–383.
  42. Johnson M. Giant magnetoresistanse and its impact on the magnetic recording industry // Physics in Canada. 2008. V. 64. P. 19–23.
  43. Hirohata A., Takahashi K. Future perspectives for spintronic devices // J. Phys. D.: Appl. Phys. 2014. V. 47. P. 193001-1-40.
  44. Nagasaka K., Jogo A., Ibusuki T., Oshima H., Shimizu Y., Uzumaki T. CPP-GMR technology for future high-density magnetic recording // Fujitsu Sci. Tech. J. 2006. V. 42. P. 149–157.
  45. Hirohata A., Sagar J., Lari L., Fleet L.R., Lazarov V.K. Heusler-alloy films for spintronic devices // Appl. Phys. A. 2013. V. 111. P. 423–430.
  46. Fert A. Proishozhdenie, razvitie i perspektivy spintroniki // UFN. 2008. V. 178. P. 1336–1348.
  47. Huang W., Yang S., Li X. Multiferroic heterostructures and tunneling junctions // J. Materionics. 2015. V. 2015. P. 1–22.
  48. Hirohata A., Sukegawa H., Yanagihara H., Zutic I., Seki T., Mizukami S., Swaminathan R. Roadmap for emerging materials for spintronic device applications // IEEE Trans. Magn. 2015. V. 51. P. 1–11.
  49. Marchon B., Pitchford T., Hsia Y.-T., Gangopadhyay S. The head-disk interface roadmap to an areal density of 4 Tbits/in2 //Adv. Tribol. 2013. V. 2013. P. 521086-1-8.
  50. Wang S., Wang Y., Victora R.H. Shingled magnetic recording on bit patterned media at 10 Tb/in2 // IEEE Trans. Magn. 2013. V. 49. P. 3644–3647.
  51. Suess D., Vogler C., Abert C., Bruckner F., Wind R., Breth L. Fundamental limits in heat assisted magnetic recording and methods to overcome it with exchange spring structures // J. Appl. Phys. 2015. V. 117. P. 163913-1-9.
  52. Okamoto S., Kikuchi N., Furuta M., Kitakami O., Shimatsu T. Microwave assisted magnetic recording technologies and related physics // J. Phys. D: Appl. Phys. 2015. V. 48. P. 353001-1-7.
  53. Victora R.H., Morgan S.M., Momsen K., Cho E., Erden M.F. Two-dimensional magnetic recording at 10 Tbits/in2// IEEE Trans. Magn. 2012. V. 48. P. 1697–1703.
  54. Kovacs A., Oezelt H., Schabes M.E., Schrefl T. Numerical optimization of writer and media for bit patterned magnetic recording // J. Appl. Phys. 2016. V. 120. P. 013902-1-6.
  55. Teo K.K., Elidrissi M.R., Chan K.S., Kanai Y. Analysis and design of shingled magnetic recording systems // J. Appl. Phys. 2012. V. 111. P. 07B716-1-5.
  56. Li X.G., Liu Z.J., Kang A.G., Xie X.Y. Writing field analysis for shingled bit-patterned magnetic recording // J. Nanomater. 2017. V. 2017. P. 1–9.
  57. Vogler C., Abert C., Bruckner F., Suess D., Praetorius D. Heat-assisted magnetic recording of bit-patterned media beyond 10 Tb/in2 // Appl. Phys. Lett. 2016. V. 108. P. 102406-1-6.
  58. Zhou N., Traverso L.M., Xu X. Power delivery and self-heating in nanoscale near-field transducer for heat-assisted magnetic recording// Nanotechnology. 2015. V. 26. P. 134001-1-7.
  59. Busyatras W., Warisarn C., Okamoto Y., Nakamura Y., Myint L.M., Supnithi P., Kovintayewat P. Utilization of multiple read heads for TMR prediction and correction in bit-patterned media recording // AIP Adv. 2017. V. 7. P. 056501-1-5.
  60. Scheunert G., Cohen S.R., Kullock R. et al. Grazing-incidence optical magnetic recording with super-resolution // Beilstein J. Nanotech. 2017. V. 8. P. 28–37.
  61. Vogler C., Abert C., Bruckner F., Suess D. Efficiently reduction transition curvature in heat-assisted magnetic recording with state-of-the-art write heads // J. Phys.: Comp. Phys. 2017. V. 50. P. 54–57.
  62. Zhang M., Zhou T., Yuan Z. Analysis of switchable spin-torque oscillator for microwave assisted magnetic recording // Adv. Cond. Matter. Phys. 2015. V. 2015. P. 457456-1-6.
  63. Dumas R.K., Sani S.R., Mohseni S.M. et al. Recent advances in nanocontact spin-torque oscillators // IEEE Trans. Magn. 2014. V. 50. P. 4100107-1-7.
  64. Pjatakov A.P., Zvezdin A.K. Magnitojelektricheskie materialy i mul'tiferroiki // UFN. 2012. V. 182. P. 593–621.
  65. John R., Berrita M., Hinzke D., Muller C. at al. Magnetization switching of FePt nanoparticle recording medium by femtosecond laser pulses // Sci. Rep. 2017. V. 7. P. 4114–4117.
  66. SHadrov V.G., Dmitrieva A.EH., Boltushkin A.V. Superparamagnitnyj predel i termostabil'nost' sred magnitnoj zapisi // Uspekhi sovremennoj radioehlektroniki. 2018. № 1. S. 9–19.

© Издательство «РАДИОТЕХНИКА», 2004-2017            Тел.: (495) 625-9241                   Designed by [SWAP]Studio