Radiotekhnika
Publishing house Radiotekhnika

"Publishing house Radiotekhnika":
scientific and technical literature.
Books and journals of publishing houses: IPRZHR, RS-PRESS, SCIENCE-PRESS


Тел.: +7 (495) 625-9241

 

Problems of creating closed channels of data transmission for the realization of radio networks which are managed by mobile groups of people or robots

Keywords:

A.V. Zaitsev – Ph.D.(Eng.), Associate Professor, General Director of «Smolensk Scientific and Innovation Center of Radio-Electronic Systems «Zavant» LLC
E-mail: info@zavant.ru
E.L. Tsaregorodcev – Ph.D.(Eng.), Associate Professor, Lecturer, «Smolensk Scientific and Innovation Center of Radio-Electronic Systems «Zavant» LLC
O.O. Krasavtsev – Head of Department of Programming, «Smolensk Scientific and Innovation Center of Radio-Electronic Systems «Zavant» LLC
D.A. Kichulkin – Head of Department of Radio Electronics, «Smolensk Scientific and Innovation Center of Radio-Electronic Systems «Zavant» LLC


To manage a group of people or robots, which work on a large territory, it is required to use an adaptive self-organizing radio network. The article deals with the questions connected with the substantiation of the principles of constructing such a network, the features of which are as follows.
The radio network should automatically adapt to the conditions of location of group of people (robots) on the ground and provide for the routing of data transfer from the control point to any employee, even if it enters the radioshadow zone. Adaptation lies in the fact that when communicating with remote workers due to optimal routing, communication should be provided over a distance significantly exceeding the range of one modem of the radio network at low transmitter power. This makes it possible to maintain communication on long distances with low power consumption, when the size and mass of the equipment is not large.
The equipment of the communication system (radio network) must be protected from radio interference and be secretive, so that it is impossible to detect through electronic reconnaissance, the parameters of the signals used and create target radio interference. This problem can be solved by applying ultra-wideband signals in the radio network whose spectral power density is less than the noise level. Useful signals in this case are highlighted through the use of special processing, which is based on knowledge of a priori information about their structure. In this case, it is impossible to detect the fact of the operation of the radio link and to measure the parameters of the radiated signal with the help of radio technical reconnaissance devices at a distance. Achieving a high degree of stealth of the radio network is also ensured by using an asynchronous mode of operation, in which it is not required to emit powerful synchronization pulses into the space to set a single time for the operation of all its devices.
The article explores the question of how to struggle with multiple reflections from the earth's surface and local objects, which are always great when working at short distances from the earth's surface. It is suggested to use complex structure of code parcels to combat reflections, as well as wobble of the frequency of repetition of signals in them. The influence of the number of pulses in the transmitted code sequence on the information transfer rate, the range of the radio network and its stealthiness is considered. An analytical method for estimating the stealthiness of the radio network operation with given parameters of its equipment is proposed. The results of calculations of the expected range of radio network detection distances using reconnaissance equipment.
At the end of the article, recommendations are formulated to achieve the protection of the radio network for management of a group of people or robots operating on large area, from natural and artificial interference, to ensure the required range at low power con-sumption, small dimensions and mass of equipment.

References:
  1. Belikova I.S., Zakalkin P.V., Starodubczev Yu.I., Suxorukova E.V. Modelirovanie setej svyazi s uchetom topologicheskix i strukturny’x neodnorodnostej // Informaczionno-izmeritel’ny’e sistemy’ i texnologii. 2017. № 2(100). S. 93−101.
  2. Koryachko V.P., Shibanov A.P., Luk’yanov O.V. Xarakteristiki seti peredachi danny’x dlya provedeniya letny’x ispy’tanij izdelij // Vestnik Ryazanskogo gosudarstvennogo radiotexnicheskogo universiteta. 2015. № 54. Ch. 1. S. 98−103.
  3. Patent № US 5040238 A. 29.06.1990. Trunking system communication resource reuse method. Motorola, Inc.
  4. Barabasi L.-A., Albert R. Emergence of scaling in random networks // Science. 1999. V. 286. P. 509−512.
  5. Recommendation ITU-T G.1070. Opinion model for video-telephony applications. Geneva: ITU-T. 2013. 22 p.
  6. Leonov A.V. E’ksperimental’naya oczenka vozmozhnosti ispol’zovaniya algoritma murav’inoj kolonii AntHocNet dlya resheniya zadachi marshrutizaczii v FANET // Nauchno-texnicheskie vedomosti Sankt-Peterburgskogo gosudarstvennogo politexnicheskogo universiteta. 2017. T. 10. № 1. S. 7−26.
  7. Chudnov A.M., Kirik D.I., Kurashev Z.V. Optimizacziya raspredeleniya informaczionny’x potokov v informaczionnoj sisteme po pokazatelyu veroyatnosti svoevremennoj dostavki soobshhenij // Radiotexnicheskie i telekommunikaczionny’e sistemy’. 2017. № 2. S. 41−49.
  8. Lemeshko A.V., Evseeva O.Yu., Garkusha S.V. Potokovaya model’ marshrutizaczii s uchetom poter’ paketov na uzlax telekommunikaczionnoj seti // Radiotexnicheskie i telekommunikaczionny’e sistemy’. 2013. № 2. S. 52−60.
  9. Recommendation ITU-T Y.1541. Network performance objectives for IP-based services. Geneva: ITU-T. 2012. 57 p.
  10. Bakke A.V., Lukashin I.V. Usovershenstvovanny’j algoritm vremennoj sinxronizaczii s ispol’zovaniem drobnogo preobrazovaniya Fur’e // Vestnik Ryazanskogo gosudarstvennogo radiotexnicheskogo universiteta. 2015. № 54. Ch. 1. S. 20−24.
  11. Pitolin V.M., Stupina A.A. Taktovaya sinxronizacziya pri vosstanovlenii neprery’vnogo potoka danny’x, peredanny’x po paketnomu kanalu svyazi // Vestnik Voronezhskogo gosudarstvennogo texnicheskogo universiteta. 2011. T. 7. № 1. S. 137−140.
  12. Makarov V.F., Petrova V.Yu. Metody’ povy’sheniya pomexoustojchivosti informaczionno-telekommunikaczionny’x sistem // Informaczionno-izmeritel’ny’e sistemy’ i texnologii. 2017. № 2(100). S. 108−116.
  13. Kirillov S.N., Lukashin I.V. Analiz e’ffektivnosti funkczionirovaniya profilya CSS standarta IEEE 802.15.4a v usloviyax dejstviya meshayushhix faktorov // Vestnik Ryazanskogo gosudarstvennogo radiotexnicheskogo universiteta. 2015. № 2(52). S. 6−10.
  14. IEEE Std 802.15.4-2003. Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs).
  15. Recommendation ITU-T G.107. The Emodel: a computational model for use in transmission planning. Geneva: ITU-T. 2012. 18 p.
  16. Pat. RF № 2580070. H04L 9/00. Sistema svyazi so sverxshirokopolosny’mi signalami / Zajczev A.V., Mitrofanov D.G., Timofeev I.A., Krasavczev O.O., Kichulkin D.A., Tereshhenko A.A., Azarov A.S., Chernikov A.K., Chizhov A.A.; data zayavleniya 30.07.2014, data opublikovaniya 11.03.2016.
  17. Astanin L.Yu., Kosty’lev A.A. Osnovy’ sverxshirokopolosny’x radiolokaczionny’x izmerenij. M.: Radio i svyaz’. 1989. 192 s.
  18. Bronshtejn I.N., Semendyaev K.A. Spravochnik po matematike. M.: Nauka. 1964.
  19. Korn G., Korn T. Spravochnik po matematike dlya nauchny’x rabotnikov i inzhenerov. M.: Nauka. 1978.
  20. Borisov V.I., Zinchuk V.M., Limarev A.E. Pomexozashhishhennost’ sistem radiosvyazi s rasshireniem spektra signalov metodom psevdosluchajnoj perestrojki rabochej chastoty’. M.: Radio i svyaz’. 2000.
May 29, 2020

© Издательство «РАДИОТЕХНИКА», 2004-2017            Тел.: (495) 625-9241                   Designed by [SWAP]Studio