Radiotekhnika
Publishing house Radiotekhnika

"Publishing house Radiotekhnika":
scientific and technical literature.
Books and journals of publishing houses: IPRZHR, RS-PRESS, SCIENCE-PRESS


Тел.: +7 (495) 625-9241

 

Method for estimating the differential code biases of GLONASS satellites in channels for the formation of navigation signals with frequency separation

Keywords:

D.V. Gulidov - Team Leader, branch «PNBS» JSC «RPC «PSI» (Korolev, Moscow Region)
E-mail: gulidov@spnav.ru


As part of the GLONASS navigation message, parameter is transmitted, which determines the offset of the radiated navigation radio signal of the band L2 with respect to the navigation radio signal of band L1. This parameter has a linear dependence and is used by two-frequency GLONASS users to correctly account for frequency-time corrections. In addition, the parameter can be used to calibrate two-frequency navigation equipment.
The value of is determined before the launch of the GLONASS satellite during the calibration of the on-board equipment on the ground stand, where it is not possible to create conditions for making the calligraphy identical to the conditions for the actual functioning of the satellite in outer space, which inevitably leads to errors. In addition, during the long-term operation of the satellite, the properties of on-board equipment also change, including because of the occurrence of abnormal situations, which also leads to a change in the value of . Therefore, there is a need to evaluate the parameter at the stage of entering the satellite into the system after launch, with subsequent monitoring during the normal operation.
To solve this problem, the paper presents a technique based on the least-squares comparison of a linear combination of two-frequency pseudorange measurements to its calculated analog, the sum of the ionospheric correction described using a single-layer local ionospheric model, and the joint differential code biases in the navigation channels of the navigation satellite and receiver. At the same time, measurements are made of a metrologically certified receiver from the System of high-precision determination of ephemeris and time corrections with known hardware delays in the receiving paths, which allows us to distinguish the differential code biases in the transmitting path of the navigation satellite.
Approbation of the presented method in comparison with the data of the CODE analysis center, which showed good agreement, and also results of the experimental evaluation of differential code biases for the GLONASS, are presented.
Based on the results of the studies, the following conclusions can be drawn:
1. The values of the differential code biases of the GLONASS lie at the level of one meter and reach a value of 4.786 m.
2. Comparison of the estimates obtained with the data from the navigation message shows their significant discrepancy, which can introduce a significant error for consumers using the parameter . The greatest discrepancy is 3.641 m.
3. During the normal operation of the GLONASS satellite, it is necessary to periodically check the differential code bi-ases of the GLONASS satellite with subsequent correction of the parameter in the GLONASS navigation message.

References:
  1. Global'naya sputnikovaya navigaczionnaya sistema GLONASS. Interfejsny'j kontrol'ny'j dokument (redakcziya 5.1). M.: RNII KP. 2008.
  2. Gulidov D.V. Rezul'taty' e'ksperimental'noj oczenki tochnosti adaptivnoj modeli ionosfery', postroennoj s ispol'zovaniem izmerenij regional'noj seti NAP GLONASS // Trudy' 4 CNII Minoborony' Rossii «Informaczionno-ballisticheskoe obespechenie razrabotki, ispy'tanij i primeneniya raketno-kosmicheskix sredstv». 2010. Vy'p. 101. S. 32–36.
  3. Gulidov D.V. Texnologicheskie aspekty' ucheta zaderzhek signala v ionosfere Zemli pri obrabotke izmerenij NSKU BAMI s ispol'zovaniem navigaczionnoj apparatury' GLONASS // Trudy' 4 CNII Minoborony' Rossii «Informaczionno-ballisticheskoe obespechenie razrabotki, ispy'tanij i primeneniya raketno-kosmicheskix sredstv». 2013. Vy'p. 107. S. 34–38.
  4. Titov A.A., Xattatov V.U., Solomenczev D.V., Xattatov B.V. Metod i rezul'taty' rascheta differenczial'ny'x zaderzhek // Trudy' XXIV Vserossijskoj nauchnoj konferenczii «Rasprostranenie radiovoln». 2014. T. 2. S. 13–16.
  5. Antonovich K.M. Ispol'zovanie sputnikovy'x radionavigaczionny'x sistem v geodezii. V 2 t. T. 1. Monografiya / GOU VPO «Sibirskaya gosudarstvennaya geodezicheskaya akademiya». M.: FGUP «Kartgeoczentr». 2005. 334 s.
  6. Wild U. Ionosphere and Geodetic Satellite Systems: Permanent GPS Tracking Data For Modelling and Monitoring // Ph.D. dissertation, Geodätische-geophysikalische Arbeiten in der Schweiz, Zürich, Switzerland. 1994. V. 48.
  7. Dach R., Lutz S., Walser P, Fridez P. Bernese GNSS Software. Version 5.2. V. 1 // Astronomical Institute, University of Bern. 2015.

© Издательство «РАДИОТЕХНИКА», 2004-2017            Тел.: (495) 625-9241                   Designed by [SWAP]Studio