Radiotekhnika
Publishing house Radiotekhnika

"Publishing house Radiotekhnika":
scientific and technical literature.
Books and journals of publishing houses: IPRZHR, RS-PRESS, SCIENCE-PRESS


Тел.: +7 (495) 625-9241

 

Experimental confirmation of the effectiveness of bone grafts combined sterilization

Keywords:

V.V. Rozanov – Ph.D. (Phys.-Math.), Dr. Sc. (Biol.), Leading Research Scientist, Scientific Centre of Hydro-Physics Researches; Professor, Department of Accelerators Physics and Radiation Medicine, Physical Faculty, Lomonosov Moscow State University; Head of Laboratory, Russian Institute of Medicinal and Aromatic Plants
E-mail: vrozanov@mail.ru
I.V. Matveychuk – D. Sc. (Biol.), Professor, Head of Scientific and Educational-Methodic Centre of Bio-Medical Technologies of Russian Institute of Medicinal and Aromatic Plants (Moscow)
E-mail: nizbmtvilar@gmail.com
A.P. Chernyaev – Dr.Sc. (Phys.-Math.), Professor, Head of the Department of Accelerators and Radiation Medicine, Head of Laboratory in Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University
E-mail: a.p.chernyaev@yandex.ru
A.A. Nikolaeva – Post-graduate Student, Department of Accelerators and Radiation Medicine, Faculty of Physics, Lomonosov Moscow State University
E-mail: naa90@mail.ru
A.V. Belousov – Ph.D. (Phys.-Math.), Associate Professor, Faculty of Physics, Lomonosov Moscow State University
E-mail: belousovav@physics.msu.ru
D.S. Yurov – Research Scientist, Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University
E-mail: d_yurov88@mail.ru


The need in bone-plastic material of various types and sizes is constantly increasing. Reconstructive operations with the use of this material are constantly conducted after obtaining industrial injuries, military conflicts, diseases of the muscu-loskeletal system, rejuvenation of osteoporosis, etc. At the same time, the quality of implants is evaluated, first of all, by their osteinductive properties. However, ensuring the safety of the recipient, determined by reliable sterilization of the plas-tic material is also important. On the other hand, the sterilization process should not lead to impairment of the properties of the implant.
The main goal of this work is to analyze existing and to develop new technological approaches to an effective sterilization while reducing the risk of side effects from sterilizing process.
Currently, the following traditionally used implant sterilization technologies are:
1. steam sterilization (autoclaving);
2. cryostyrenization;
3. chemical sterilization (sterilization using special solutions);
4. gas sterilization (ethylene oxide, formaldehyde vapor, etc.);
5. radiation (gamma radiation or fast electrons);
Sterilization performed with steam, air and gas sterilizers, characterized by the heating process, does not allow the processing on temperature sensitive materials, including biological tissues. Chemical sterilization is very toxic, and the degree of its effectiveness depends on the exposure and concentration of the used drugs. In addition to toxicity, chemical methods have a number of other limitations. For example, the use of formalin with the addition of an antibiotic as a preservative and a sterilizer entails a number of problems due to a shorter transplant storage time (no more than 6 months), the need for washing the prepared graft before clinical use, formalin toxicity, and the inconvenience of storing and transporting the grafts immersed in a formalin solution.
Radiation processing is the most effective sterilizing action. Radiation sterilization has several advantages: high penetrating power, relatively low temperature rise. However, a review of a number of studies has shown that serious changes occur in biological tissues during high-dose radiation sterilization.
The way out of this situation can be the use of combined effects of various physical and chemical factors. In this case, the impact of each of the factors separately can be less intense and introduce fewer changes in the native structure of the im-plant. However, their combined use can lead to a synergistic effect that provides an adequate level of sterilization.
In order to overcome the above drawbacks, an additional sterilizing factor was proposed to use as a sterilization method comprising treating the implant in two steps with an ozone-air mixture.
The obvious advantages of ozone sterilization is, first of all, low-temperature process, relatively short exposure, deep pene-tration into the material, the ability to sterilize temperature-resistant products, the ability to work with sterilization cham-bers of a large volume, the lack of toxicity, as well as environmental safety.
In this study we confirm the possibility of implementing of a combined method for bone implants sterilization, including initial impact on the samples by an ozone-air mixture and subsequent irradiation with fast electrons with an absorbed dose of 11-15 kGy. This result demonstrates the effectiveness of the combined method of sterilization of bone implants.

References:
  1. Panteleev V.I., Rozanov V.V., Matvejchuk I.V. i dr. Mediczinskie ozonovy'e texnologii. Novy'e zadachi, vozmozhnosti, oborudovanie // Biomediczinskaya radioe'lektronika. 2013. № 2. S. 3–11.
  2. Imamaliev A.S. Biologicheskaya oczenka transplantiruemy'x tkanej. M.: Nauka. 1975. S. 48–57.
  3. Savel'ev V.I. Demineralizovannaya kost' kak osobaya raznovidnost' kostno-plasticheskogo materiala // Zagotovka i peresadka demineralizovannoj kostnoj tkani v e'ksperimente i klinike / Sb. nauch. trudov LNIITO im. R.R. Vredena. L.: NIITO. 1983. S. 3–12.
  4. Dziedzic-Goclawska A. The effect of radiation sterilization on connective tissue allografts // Allograft against disability / Mat. 2 World Congress on Tissue Banking. Warsaw. 1999. P. 48.
  5. Trends in radiation sterilization of health care products. Vienna: International Atomic Energy Agency. 2008.
  6. Komarov G.S., Nagoga A.G., Davy'dov V.M. Reparativny'j osteogenez pri osteosinteze mnogooskol'chaty'x perelomov dlinny'x trubchaty'x kostej s ispol'zovaniem allogenny'x transplantatov // Novoe v reshenii aktual'ny'x problem travmatologii i ortopedii / Sb. nauch. tr. M. 2000. S. 147–148.
  7. Perova N.V., Dovzhik I.A., Sevast'yanov V.I. Rol' ioniziruyushhego izlucheniya v izgotovlenii mediczinskix izdelij // Aktual'ny'e voprosy' tkanevoj i kletochnoj transplantologii / Mater. V Vseros. simpoziuma s mezhdunarodny'm uchastiem. Ufa. 2012. S. 99–100.
  8. Cornu O., Banse X., Docquier P.L.et al. Effect of freeze-drying and gamma irradiation on the mechanical properties of human cancellous bone // J. Orthop. Res. 2000. V.18. № 3. P. 426–431.
  9. Patent № 2456003 RF. Sposob polucheniya demineralizovannogo kostnogo matriksa v vide kroshki // V.G. Lunin, A.S. Karyagina-Zhulina, N.E. Sharapova i dr.
  10. Patent № 2356224 RF. Kombinirovanny'j sposob sterilizaczii kostny'x transplantatov // V.I. Savel'ev, A.A. Bulatov, Ju.A. Ry'kov. 2009.
  11. Patent № 2172104 RF. Sposob izgotovleniya implantatov iz gubchatoj kostnoj tkani // M.V. Lekishvili, A.Ju. Mixajlov, M.G. Vasil'ev.
  12. Patent RF № 2147800. Sposob izgotovleniya kostnogo transplantata // M.V. Lekishvili, I.A. Kasy'mov.
  13. Shangina O.R. Vliyanie radiaczionnoj sterilizaczii na strukturu biomaterialov. Alloplant: E'ksperimental'no-morfologicheskoe issledovanie: Diss. ... kand. biol. nauk. Ufa. 1999. 130 s.
  14. Patent RF 2526429. Sposob izgotovleniya kostny'x implantatov // V.A. By'kov, V.V.Rozanov, I.V.Matvejchuk i dr.
  15. Klinicheskie aspekty' ozonoterapii // Pod red. A.V. Zmy'zgovoj i V.A. Maksimova. M.: NPC Ozonoterapii. 2003. 288 s.
  16. Shangina O.R., Nigmatullin R.T. Vliyanie radiaczionnoj sterilizaczii na strukturu i svojstva biomaterialov // Morfologiya. Nauchno-teoreticheskij mediczinskij zhurnal. 2006. T. 129. № 3. S. 44–48.
  17. Sibel'dina L.A. Sterilizacziya ozonom // Mediczina i zdorov'e. Noyabr' 2007. № 11(19). S. 24–25.
  18. Gustov A.V., Kontorshhikova K.N., Potexin Ju.P. Ozonoterapiya v nevrologii. Nizhnij Novgorod: Izd-vo Nizhegor. gos. med. akademii. 2012. 192 s.
  19. Patent № 2630464 (RF). Kombinirovanny'j sposob sterilizaczii kostny'x implantatov / I.V. Matvejchuk, V.V. Rozanov, I.K. Gordonova, Z.K. Nikitina, N.I. Sidel'nikov, Ju.Ju. Litvinov, A.A. Nikolaeva, A.P. Chernyaev, I.V. Panteleev.
  20. Dux S.J., Ramsey D., Chu E.H. et al. Alterations in damage processes in dense cancellous bone following gamma-radiation sterilization // Journal of Biomechanics. 2010. V. 43. P. 1509–1513.
  21. Nguyen H., Morgan David A.F. et al. Validation of 11 kGy as a Radiation Sterilization Dose for Frozen Bone Allografts // The Journal of Arthroplasty. 2011. V. 26. № 2. P. 303–308.
  22. Nguyen H., Cassady A.I., Bennett M.B. et al. Reducing the radiation sterilization dose improves mechanical and biological quality while retaining sterility assurance levels of bone allografts // Bone. 2013. № 57. P. 194–200.
  23. Lekishvili M.V. Texnologii izgotovleniya kostnogo plasticheskogo materiala dlya primeneniya v vosstanovitel'noj xirurgii (e'ksperimental'noe issledovanie): Diss. ... doct. med. nauk. Moskva. 2005. 236 s.
  24. Transy M. J., Fleurette J. Sterilization by ionizing radiation // NASA Technical translation, 1977.
May 29, 2020

© Издательство «РАДИОТЕХНИКА», 2004-2017            Тел.: (495) 625-9241                   Designed by [SWAP]Studio