Radiotekhnika
Publishing house Radiotekhnika

"Publishing house Radiotekhnika":
scientific and technical literature.
Books and journals of publishing houses: IPRZHR, RS-PRESS, SCIENCE-PRESS


Тел.: +7 (495) 625-9241

 

CRISPR/Cas9 mediated genome editing technology to knock out the urokinase receptor gene in neuroblastoma cells

Keywords:

K. D. Rysenkova – Post-graduate Student, Faculty of Medicine, Lomonosov Moscow State University
E-mail: karina_ry@mail.ru
E. V. Semina – Ph.D. (Biol.), Leading Research Scientist, Federal State Budget Organization National Medical Research Center of Cardiology of the Ministry of Healthcare of the Russian Federation; Senior Research Investigator, Faculty of Medicine, Lomonosov Moscow State University
E-mail: e-semina@yandex.ru
M. N. Karagyaur – Ph.D. (Biol.), Senior Research Scientist, Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University
E-mail: darth_max@mail.ru
А. А. Shmakova – Student, Faculty of Medicine, Lomonosov Moscow State University
E-mail: anya.shmakova@list.ru
D. T. Dyjkanov – Leading Specialist, Faculty of Medicine, Lomonosov Moscow State University
E-mail: danidy@inbox.ru
K. А. Rubina – Dr.Sc. (Biol.), Senior Research Scientist, Faculty of Medicine, Lomonosov Moscow State University
E-mail: rkseniya@mail.ru
V. А. Tkachuk – Academician RAS, Dr.Sc. (Biol.), Professor, Federal State Budget Organization National Medical Research Center of Cardiology of the Ministry of Healthcare of the Russian Federation; Dean of Fa-culty of Medicine, Lomonosov Moscow State University
E-mail: tkachuk@fbm.msu.ru


Neuroblastoma is considered to be one of the most aggressive pediatric tumors with high invasive potential and risk of me-tastasis. The increased expression of urokinase and its receptor is associated with a negative prognosis of the disease as it promotes tumor proliferation and increases metastatic potential. Nowadays CRISPR/Cas9 technology is widely used for genome editing in mammalian cells. In current study we selected the optimal sequences of single guide RNAs and conditions for the analysis of urokinase receptor gene (uPAR) knockout in linear mouse neuroblastoma cells (Neuro2a) having an unstable genome. To assess the effectiveness of uPAR knockout with CRISPR/Cas9 in Neuro2a clones selected after transfection, the amount of uPAR protein was analyzed by Western blotting. It was found that uPAR knockout decreased uPA-stimulated invasive potential of the cells. Thus, uPAR knockout by CRISPR is a promising therapeutic strategy and it can be considered as a therapeutic approach to suppress migration and invasion of tumor cells.

References:
  1. Gatta G., Botta L., Rossi S., Aareleid T., Bielska-Lasota M., Clavel J., Dimitrova N., Jakab Z., Kaatsch P., Lacour B., Mallone S., Marcos-Gragera R., Minicozzi P., Sánchez-Pérez M. J., Sant M., Santaquilani M., Stiller C., Tavilla A., Trama A., Visser O., Peris-Bonet R., Group E. W. Childhood cancer survival in Europe 1999-2007: results of EUROCARE-5--a population-based study // Lancet Oncol. 2014. V. 15. № 1. P. 35–47.
  2. Brodeur G.M. Neuroblastoma: biological insights into a clinical enigma // Nat. Rev. Cancer. 2003. V. 3. № 3. P. 203–16.
  3. Brodeur G.M., Bagatell R. Mechanisms of neuroblastoma regression // Nat. Rev. Clin. Oncol. 2014. V. 11. № 12. P. 704–13.
  4. DuBois S.G., Kalika Y., Lukens J.N., Brodeur G.M., Seeger R.C., Atkinson J.B., Haase G.M., Black C.T., Perez C., Shimada H., Gerbing R., Stram D.O., Matthay K.K. Metastatic sites in stage IV and IVS neuroblastoma correlate with age, tumor biology, and survival // J. Pediatr. Hematol. Oncol. 1999. V. 21. № 3. P. 181–9.
  5. Li P., Gao Y., Ji Z., Zhang X., Xu Q., Li G., Guo Z., Zheng B., Guo X. Role of urokinase plasminogen activator and its receptor in metastasis and invasion of neuroblastoma // J. Pediatr. Surg. 2004. V. 39. № 10. P. 1512–9.
  6. Yang J.L., Seetoo D., Wang Y., Ranson M., Berney C.R., Ham J.M., Russell P.J., Crowe P.J. Urokinase-type plasminogen activator and its receptor in colorectal cancer: independent prognostic factors of metastasis and cancer-specific survival and potential therapeutic targets // Int. J. Cancer. 2000. V. 89. № 5. P. 431–9.
  7. Yu W., Kim J., Ossowski L. Reduction in surface urokinase receptor forces malignant cells into a protracted state of dormancy // J. Cell. Biol. 1997. V. 137. № 3. P. 767–77.
  8. Swiercz R., Wolfe J.D., Zaher A., Jankun J. Expression of the plasminogen activation system in kidney cancer correlates with its aggressive phenotype // Clin. Cancer. Res. 1998. V. 4. № 4. P. 869–77.
  9. Smith H.W., Marshall C.J. Regulation of cell signalling by uPAR // Nat. Rev. Mol. Cell. Biol. 2010. V. 11. № 1. P. 23–36.
  10. Barrangou R., Fremaux C., Deveau H., Richards M., Boyaval P., Moineau S., Romero D. A., Horvath P. CRISPR provides acquired resistance against viruses in prokaryotes // Science. 2007. V. 315. № 5819. P. 1709–12.
  11. Wu Y., Liang D., Wang Y., Bai M., Tang W., Bao S., Yan Z., Li D., Li J. Correction of a genetic disease in mouse via use of CRISPR-Cas9 // Cell. Stem. Cell. 2013. V. 13. № 6. P. 659–62.
  12. https://www.lgcstandards-atcc.org/products/ all/CCL-131.aspx?geo_country=ru (data obrashheniya k resursu: 04.12.17)
  13. Ran F.A., Hsu P.D., Lin C.Y., Gootenberg J.S., Konermann S., Trevino A.E., Scott D.A., Inoue A., Matoba S., Zhang Y., Zhang F. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity // Cell. 2013. V. 154. № 6. P. 1380–9.
  14. Cong L., Ran F.A., Cox D., Lin S., Barretto R., Habib N., Hsu P.D., Wu X., Jiang W., Marraffini L.A., Zhang F. Multiplex genome engineering using CRISPR/Cas. systems // Science. 2013. V. 339. № 6121. P. 819–23.
  15. http://CRISPR/Cas9.mit.edu/ (data obrashheniya k resursu: 04.12.17)
  16. Beloglazova I.B., Akopyan Zh.A., Karagyaur M.N., Plexanova O.S., Syomina E.V., Stambol'skij D.V. Perspektivy' sozdaniya protivoopuxolevy'x lekarstvenny'x sredstv, napravlenny'x na sistemu aktivatora plazminogena urokinaznogo tipa // Texnologii zhivy'x sistem. 2013. T. 10. № 1. C. 003–019.
  17. Tam C., Wong J.H., Cheung R.C. F., Zuo T., Ng T.B. Therapeutic potentials of short interfering RNAs // Appl. Microbiol. Biotechnol. 2017. V. 101. № 19. P. 7091–7111.
  18. Young S.W., Stenzel M., Yang J.L. Nanoparticle-siRNA: A potential cancer therapy? // Crit. Rev. Oncol. Hematol. 2016. V. 98. P. 159–69.
  19. Maduri S. Applicability of RNA interference in cancer therapy: Current status // Indian. J. Cancer. 2015. V. 52. № 1. P. 11–21.
  20. Lakka S.S., Gondi C.S., Dinh D.H., Olivero W.C., Gujrati M., Rao V.H., Sioka C., Rao J.S. Specific interference of urokinase-type plasminogen activator receptor and matrix metalloproteinase-9 gene expression induced by double-stranded RNA results in decreased invasion, tumor growth, and angiogenesis in gliomas // J. Biol. Chem. 2005. V. 280. № 23. P. 21882–92.
  21. Mohan P.M., Chintala S.K., Mohanam S., Gladson C.L., Kim E.S., Gokaslan Z.L., Lakka S.S., Roth J.A., Fang B., Sawaya R., Kyritsis A.P., Rao J.S. Adenovirus-mediated delivery of antisense gene to urokinase-type plasminogen activator receptor suppresses glioma invasion and tumor growth // Cancer Res. 1999. V. 59. № 14. P. 3369–73.
  22. Gondi C.S., Lakka S.S., Yanamandra N., Olivero W.C., Dinh D.H., Gujrati M., Tung C.H., Weissleder R., Rao J.S. Adenovirus-mediated expression of antisense urokinase plasminogen activator receptor and antisense cathepsin B inhibits tumor growth, invasion, and angiogenesis in gliomas // Cancer Res. 2004. V. 64. № 12. P. 4069–77.
  23. Lakka S.S., Rajagopal R., Rajan M.K., Mohan P.M., Adachi Y., Dinh D.H., Olivero W.C., Gujrati M., Ali-Osman F., Roth J.A., Yung W.K., Kyritsis A.P., Rao J.S. Adenovirus-mediated antisense urokinase-type plasminogen activator receptor gene transfer reduces tumor cell invasion and metastasis in non-small cell lung cancer cell lines // Clin. Cancer Res. 2001. V. 7. № 4. P. 1087–93.
  24. Scacheri P.C., Rozenblatt-Rosen O., Caplen N.J., Wolfsberg T.G., Umayam L., Lee J.C., Hughes C.M., Shanmugam K.S., Bhattacharjee A., Meyerson M., Collins F.S. Short interfering RNAs can induce unexpected and divergent changes in the levels of untargeted proteins in mammalian cells // Proc. Natl. Acad. Sci. USA. 2004. V. 101. № 7. P. 1892–7.
  25. Nemudry'j A.A., Valetdinova K.R., Medvedev S.P., Zakiyan S.M. Sistemy' redaktirovaniya genomov TALEN i CRISPR/CAS instrumenty' otkry'tij // Acta Naturae. 2014. T. 3. № 22. C. 20–42.
  26. Cui Y., Wu B.O., Flamini V., Evans B.A. J., Zhou D., Jiang W.G. Knockdown of EPHA1 Using CRISPR/CAS9 Suppresses Aggressive Properties of Ovarian Cancer Cells // Anticancer. Res. 2017. V. 37. № 8. P. 4415–4424.
  27. Wang H., Sun W. CRISPR-mediated targeting of HER2 inhibits cell proliferation through a dominant negative mutation // Cancer Lett. 2017. V. 385. P. 137–143.
May 29, 2020

© Издательство «РАДИОТЕХНИКА», 2004-2017            Тел.: (495) 625-9241                   Designed by [SWAP]Studio