Radiotekhnika
Publishing house Radiotekhnika

"Publishing house Radiotekhnika":
scientific and technical literature.
Books and journals of publishing houses: IPRZHR, RS-PRESS, SCIENCE-PRESS


Тел.: +7 (495) 625-9241

 

Remote secondary surveillance radar system control accuracy in case of the line-of-sight radar signals propagation absence

Keywords:

I.A. Tsikin – Dr.Sc.(Eng.), Professor, Peter The Great St. Petersburg Polytechnic University
E-mail: tsikin@mail.spbstu.ru
E.S. Poklonskaya – Assistant, Peter The Great St. Petersburg Polytechnic University
E-mail: catherine091@mail.ru


The Secondary Surveillance Radar system (SSRS) distance analysis method is considered in case of Secondary Surveillance Radar (SSR) signals absence on the Remote Analysis Station (RAS) receiver. In this case the Distance Analysis System (DAS) exploitation is possible only with the presence of the aircrafts equipped with the ADS B transponder which is true for the majority of aircrafts from scheduled airlines.
The error sources which influence on the DAS accuracy are the noise-related errors and so-called system errors (SSR instabilities and errors related to the SSR signal shape and the coding method). The allowable error levels which ensure the DAS accuracy the same as the controlled SSR accuracy, which has an order of 100 meters, are determined.
The RAS accuracy dependent on the aircraft of interest position is considered in cases of presence or absence of SSR mode values a priori information at DAS. It is shown that acceptable accuracy which is about 100 meters can be reached only with the presence of such information. The highest accuracy is achieved when the aircraft of interest position provides the angle «SSR – base center – aircraft of interest» value in the range for all considered conditions. Here base center is the point lies on the middle of the line segment connecting SSR and RAS.
It is shown that the error in reference aircraft position determination affects the DAS accuracy weakly in case of usage the ADS B system for this aircraft position determination. The reference aircraft position provided the highest DAS accuracy is achieved when the angle «SSR – base center – reference aircraft» value is equal to for all considered conditions.
Thus the RAS position should provide the for the majority of the aircrafts of interest and simultaneously the reference aircrafts provided should be chosen in case of presence of such aircrafts at the RAS receiver. The correct choice of the RAS position is generally possible because of the availability of the aircrafts track information.

References:
  1. Skolnik M. Radar Handbook. Third Edition. The McGraw-Hill Companie. 2008. 1350 p.
  2. Rukovodstvo po aviaczionnomu nablyudeniyu. Mezhdunarodnaya organizacziya grazhdanskoj aviaczii. 2010.
  3. Zhang J., Liu W., Zhu Y. Study of ADS B Data Evaluation. China Measurement & Test. 01.2013.
  4. Czikin I.A., Poklonskaya E.S. Obrabotka signalov sistemy' vtorichnoj radiolokaczii na udalennom punkte kontrolya // Nauchno-texnich. vedomosti SPbGPU. Informatika. Telekommunikaczii. Upravlenie. 2017. T10. № 2. S. 58−74.
  5. Otsuyama T., Honda J., Shiomi K., Minorikawa G., Hamanaka Y. Performance Evaluation of Passive Secondary Surveillance Radar for Small Aircraft Surveillance // European Radar Conference (EuRAD). 2015. P. 505−508.
  6. Shiomi K., Senoguchi A., Aoyama S. Development of Mobile Passive Secondary Surveillance Radar // 28th International Congress of the Aeronautical Sciences. 2012.
  7. Passive ATCRBS using signals of remote SSR: pat. № US4115771; US 05/797,675; published 19.09.1978.
  8. Passive SSR system: pat. № US6344820; US 09/609,056; published 5.12.2002.
  9. Stacey D. Aeronautical and radio communication systems and network. Chichester.: John Wiley & Sons Ltd. 2008. 350 p.
  10. Zagrebin I.V., Romanov A.V. Modernizacziya e'lektroprivoda vrashheniya antenny' vtorichnogo radiolokatora «Koren'-AS» // Trudy' regional'noj studencheskoj nauch.-texn. konf. «Prikladny'e zadachi e'lektromexaniki, e'nergetiki, e'lektroniki». 2004. S. 21−24.
  11. Aver'yanov V.Ya. Raznesenny'e radiolokaczionny'e stanczii i sistemy'. Minsk.: Texnika. 1978. 148 s.
  12. Willis N.J., Griffiths H.D. Advances in Bistatic Radar. SciTech Publishing. Inc. 2007. P. 491.
  13. Aviaczionnaya e'lektrosvyaz'. Tom IV. Sistemy' nablyudeniya i preduprezhdeniya stolknovenij: Prilozhenie 10 k Konvenczii o Mezhdunar. grazhdanskoj aviaczii. Mezhdunar. standarty' i Rekomenduemaya praktika. Mezhdunar. organizacziya grazhdanskoj aviaczii. 07.2007.
  14. Ry'tov S.M. Vvedenie v statisticheskuyu radiofiziku. Ch. 1. M.: Nauka. 1976. 494 s.
  15. Klovskij D.D. Peredacha diskretny'x soobshhenij po radiokanalam. Izd. 2-e, pererab. i dop. M.: Radio i svyaz'. 1982. 304 s.
  16. Honda J., Otsyuama T. Estimation of Target Detection Rate in Aircraft Surveillance System // International Conference on Network-Based Information Systems. 2013. P. 561−565.
  17. Fränken D., Hüpper A. Aircraft Positioning with Secondary Surveillance Radar and Time of Arrival Measurements // 14th International Radar Symposium (IRS). 2013.
  18. Kim E., Sivits K. Blended secondary surveillance radar solutions to improve air traffic surveillance // Aerospace Science and Technology. 2015. V. 45. P. 203−208.
  19. Wang Y., Bao Q., Wamg D. An Experimental Study of Passive Bistatic Radar Using Uncooperative Radar as a Transmitter // IEEE Geoscience and Remote Sensing Letters. 2015. V. 12. № 9. P. 1868−1872.
  20. Wang D., Bao Q., Tian R., Chen Z. Bistatic weak target detection method using non-cooperative air surveillance radar // Journal of Systems Engineering and Electronics. 2015. V. 26. № 5. P. 954−963.
  21. Malanowski M. Detection and parameter estimation of manoeuvring targets with passive bistatic radar // IET Radar, Sonar & Navigation. 2012.V. 6. № 8. P. 739−745.

© Издательство «РАДИОТЕХНИКА», 2004-2017            Тел.: (495) 625-9241                   Designed by [SWAP]Studio