Radiotekhnika
Publishing house Radiotekhnika

"Publishing house Radiotekhnika":
scientific and technical literature.
Books and journals of publishing houses: IPRZHR, RS-PRESS, SCIENCE-PRESS


Тел.: +7 (495) 625-9241

 

A method of extending the scope of open-loop fiber-optic gyroscopes

Keywords:

N.I. Krobka – Ph. D. (Phys.-Math.), Main Research Scientist, Applied Mechanics SRI named after academian V.I. Kuznetsov (Moscow)
E-mail: tsenki@russian.space
V.N. Gerdi – Ph. D. (Eng.), Associate Professor, Dean of instrument engineering faculty, Bauman Moscow State Technical University
E-mail: psbmstu@yandex.ru
D.S. Scherbitsky – Leading Engineer, Applied Mechanics SRI named after academian V.I. Kuznetsov (Moscow)
E-mail: tsenki@russian.space
A.M. Goryachkin – Main Specialist, Applied Mechanics SRI named after academian V.I. Kuznetsov (Moscow)
E-mail: tsenki@russian.space


The relevance and novelty of the modernization of the FOG to extend its application area is described in the paper. The principle of operation of the fiber optic gyro (FOG) with a rectangular auxiliary phase modulation in a traditional design is presented in the paper. The scheme open-loop FOG is described in the paper. The basic feedback conventional FOG, the existing methods of suppressing the temperature drift and non-linearity of the scale factor in the measurement of angular velocities greater than 35°/c is provided. Disad-vantages of the existing method for reducing non-linearity of the scale factor and the way to address them with the help of the mod-ernization of the electronic circuit FOG is presented. A method for increasing the range of the measured angular velocity open loop FOG-based tri-band modulation is provided. The experiment is described and carried out to determine the accuracy parameters FOG using Allan variance. The comparison of these parameters with traditional FOG modernized FOG. The estimation of the applicability of the developed method is implemented to increase the range of the measured angular velocities FOG.

References:
  1. Moslehi B.M., Yahalom R., Faridian F. et al. Compact and robust open-loop fiber-optic gyroscope for application in harsh environment // Proc. SPIE. 2010. V. 7817. P. 78170 Q.
  2. Lefevre H.C., Graindorge Ph., Arditty H.J. et al. Double closed-loop hybrid fiber gyroscope using digital phase ramp // Optical Fiber Sensors (OFS). 1 January 1985. San Diego. CA. Post Deadline. P. PDS7 1.
  3. Pavlath G.A. Closed-loop fiber optic gyros // Proc. SPIE. 1996. V. 2837. P. 46.
  4. Allan D.W. Statistics of atomic frequency standards // Proc. of the IEEE. 1966. 54(2). P. 221−230. 952−1997.
  5. Kurbatov A.M., Kurbatov R.A. Puti povy'sheniya tochnosti volokonno-opticheskix giroskopov // Giroskopiya i navigacziya. 2012. № 1. S. 102.
  6. Pat. RF № 2130587. Sposob obrabotki signala kol'czevogo interferometra volokonno-opticheskogo giroskopa / Kurbatov A.M.
  7. Mark J., Tazartes D. Random overmodulation for fiber optic gyros // 5 th International Conference On Integrated Navigation Systems. Saint Petersburg. 1998. P. 226.
  8. Pat. RF № 2472111. Sposob ustraneniya zony' nechuvstvitel'nosti v volokonno-opticheskom giroskope / Kurbatov A.M.
  9. Shherbiczkij D.S., Krobka N.I. Issledovanie korrelyaczionny'x matricz shumov mnogoosny'x VOG s pomoshh'yu graficheskix proczessorov // II Vseros. nauchno-texnich. konf. «Aktual'ny'e problemy' raketno-kosmicheskoj texniki». Samara: CzSKB OAO «RKCz «Progress». 2011.
  10. US Patent № 4,705,399. 1987. Device for measuring a nonreciprocal phase shift produced in a closed-loop interferometer / Graindorge P., Les Hammeaux M., Arditty H.H., Le Roi M., Lefevre H.C.
  11. US Patent № 5,116,127. 1992. Fiber optic Sagnac interferometer with digital phase ramp resetting / Grollman P.
  12. US Patent № 5,123,741. 1992. Fiber optic Sagnac interferometer with digital phase ramp resetting via correlation-free demodulator control / Spahlinger G.
  13. Malikov M.F. Osnovy' metrologii. M.: Izd-vo Komiteta po delam mer i izmeritel'ny'x priborov pri SM SSSR. 1948.
  14. Bergh R.A. Dual-ramp closed-loop fiber-optic gyroscope // Proc. SPIE. 1989. V. 1169. P. 429.
  15. Burns W.K., Moeller R.P. Observation of coherence effects in a quasi-monochromatic fiber-optic gyroscope // Journal of Lightwave Technology. 1987. V. LT 5. № 7. P. 1024.
  16. Yi X., Wen X. Y integrated optic chip (Y IOC) applied in fiber optic gyro // Proc. SPIE. 2006. V. 6344. P. 63440U 1.
  17. US Patent № 5,430,545. 1995. Fiber optic angular rate sensor including arrangement for reducing output signal distortion / Kovacs R.A.
  18. US Patent № 5,504,580. 1996. Tuned integrated optic modulator on a fiber optic gyroscope / Hollinger W.P., Covacs R.A.
  19. US Patent № 7,336,364. 2008. Minimal bias switching for fiber optic gyroscope / Greening T.C., Khari S.H., Newlin M.P.
  20. IEEE Standard Specification Format Guide and Test Procedure for Single-Axis Interferometric Fiber Optic Gyros.
  21. Liu R.Y., El-Wailly T.F., Dankwort R.C. Test results of Honeywell’s first generation, high-performance interferometric fiber-optic gyroscope // Proc. SPIE. 1991. V. 1585. P. 262.
  22. Kurbatov A.M. O novy'x putyax sovershenstvovaniya volokonno-opticheskix giroskopov s otkry'ty'm i zakry'ty'm konturom obratnoj svyazi // Giroskopiya i navigacziya. 2015. № 1 (88) S. 43−60.
  23. Shherbiczkij D.S., Druzhinin P.V. «Opredelenie koe'fficzientov modeli sluchajnoj pogreshnosti volokonno-opticheskogo giroskopa metodom regressionnogo analiza» // 16 ya konf. molody'x ucheny'x «Navigacziya i upravlenie dvizheniem». 2014.
  24. Matveev V.A. Giroskop – e'to prosto. M.: Izd-vo MGTU im. N.E'. Baumana. 2012.
  25. Matveev V.A., Antonova M.V. Model' pogreshnosti volokonno-opticheskogo giroskopa pri vozdejstvii teplovy'x i magnitny'x polej // Vestnik «Priborostroenie» № 3. M.: MGTU im. N.E'. Baumana. 2014.

© Издательство «РАДИОТЕХНИКА», 2004-2017            Тел.: (495) 625-9241                   Designed by [SWAP]Studio