Radiotekhnika
Publishing house Radiotekhnika

"Publishing house Radiotekhnika":
scientific and technical literature.
Books and journals of publishing houses: IPRZHR, RS-PRESS, SCIENCE-PRESS


Тел.: +7 (495) 625-9241

 

The Neurosupercomputer Paradigm

Keywords:

A.V. Savelyev – Ph.D. (Philos.), Senior Research Scientist, Director of the Patent agency «©Uniquely honest patenting» www.patenttt.narod.ru, Scientific coordinator of the permanent seminar «Neyrophylosophy» of the Moscow State University by M.V. Lomonosov, Scientific coordinator of the permanent seminar «Knowledge Management» of the Government administration department» of the Moscow State University by M.V. Lomonosov (Moscow)
E-mail: gmkristo@yandex.ru


The author presents the results of many years of research into the construction of the detailed multidimensional model of neuronal exocytosis. It is shown that the hyper-complexity is determined by hyper-network construction of the logic of processes. It allows us to talk about their simulating as the neurosupercomputer paradigm of neurocomputations. The author presents patented developments of non-mathematical multiprocessor elements of neurosupercomputers was based on simulating of various sides of exocytosis of neurons.
The transition to a new neurosupercomputer paradigm for the construction of neurocomputing systems assumes a de-tailed study and modeling of the features of the mechanisms of the functioning of the biological nervous tissue. This involves the reproduction not only of parallel or superparallel processing of information, but also the development of fundamentally new approaches to its processing, the source of which can become a full-scale object successfully. But it requires careful study, not abstraction and complete isolation from it, as McCulloch and Pitts did, and, despite the 70-year history of the movement in this direction, now more than ever, it becomes clear that this is sooner or later still need to do it. The paper contains a meaningful description of the enormous complexity of the processes associated with exocytosis, at the same time it becomes clear that for modeling on conventional computers, a mathematical-geometric description of these complex processes, which are also hyper-complex, is necessary. Another way, shown by us, is the creation of specialized non-mathematical neuroprocessors, which can be considered as neurosupercomputers because of their work with the hyper-compexity of real neural networks.
We have shown that there are many sources of dynamic variations in exocytosis of neural synapses, and the degree of their differences is significant and essential for describing the work of the neuron as a whole. This difference in the dynamic properties of exocytosis causes the construction of modeling systems as neurosupercomputer. These properties of real neurons contribute not only to parallelization or superparallelization of information processing, but also to the development of other, qualitatively new ways of processing it, implemented on neurosupercomputers.
This work was financially supported by RHSF in grant № 15-03-00519а «Post-non-classic paradigm of artificial intellect».

References:
  1. 150 let «Refleksam golovnogo mozga» / Sb. nauch. trudov yubilejnogo simpoziuma, posvyashhennogo izdaniyu stat'i I.M. Sechenova (kollektivnaya nauchnaya monografiya) // Otv. redaktory': A.Ju. Alekseev, Ju.Ju. Petrunin, A.V. Savel'ev, E.A. Jankovskaya / Tex. redaktor A.V. Savel'ev. M.: IIntell. 2014. S. 204–219. http://www.aintell.info/elib/17.pdf
  2. McCulloch W.S., Pitts W.H. A logical calculus of the ideas immanent in nervous activity // Bull. Math. Biophysics. 1943. № 5. P. 115–133.
  3. Liberman E.A. Kletka kak molekulyarny'j komp'yuter (MKC). IV // Biofizika. 1974. T. 19. S. 148.
  4. De Robertis E.D.P., Franchi C.M. Electron microscope observation on synaptic vesicles in synapses of the retinal rods and cones // J. Biophysical and Biochemical Cytology. 1956. № 2. P. 307–318.
  5. Savel'ev A.V. Obrazovanie uporyadochenny'x struktur v sinapticheskoj shheli e'lektricheskogo sinapsa // Zhurnal problem e'volyuczii otkry'ty'x sistem. Almaty': E'vero. 2003. T. 1. Vy'p. 5. S. 152–156.
  6. Savel'ev A.V. O roli e'lektricheskix sinapsov v nervnoj tkani. Model' pervogo urovnya // V sb.: «Nejroinformatika i ee primenenie». Krasnoyarsk. 2002. S. 116–119.
  7. Terävänen H. Electron microscopic localization of cholinesterase in the rat myoneural junction // Histochemie. 1967. V. 10. P. 266–271.
  8. Shute C.C.D., Lewis P.R. Cholinergic and monoaminergic systems of the brain // Nature. 1966. V. 212. P. 710–711.
  9. Fonnum F. Strom-Mathisen T., Walberg F. Glutamate decarboxylase in inhibitory neurons: A study of the enzyme in Purkinje cell axons and boutons in cat // Brain Research. 1970. V. 20. P. 259–275.
  10. Marchbanks R. M. The uptake of 14C-choline into synaptosomes in vitro // Biochem. J. 1968. V. 110. P. 533.
  11. Whittaker V.P., Sheridan M.N. The morphology and acetylcholine content of isolated cerebral cortical synaptic vesicles // J. Neurochemistry. 1965. V. 12. P. 363–372.
  12. Bacq Z.M. Chemical transmission of nerve impulses. A historical sketch. Oxford: Pergamon Press, 1995.
  13. Mac Intoch F. C. Acetylcholine. Basic Neurochemistry. Boston: Little, Brown. 1976.
  14. Hebb C. O., Krnjevic K., Silver A. Ach and cholinacetyltransferase in the diaphragm of the rat // J. Physology. 1964. V. 171. P. 504–513.
  15. Lissak K. Liberation of Ach and adrenaline by stimulating isolated nerves // American J. Physiology, 1939. V. 127. P. 263–271.
  16. Brooks V.B. The action of botulinum toxin on motor nerve filaments // J. Physology. 1954. V. 123. P. 501–515.
  17. Mitchell J. F., Silber A. The spontaneous relase of acetylcholine from cerebral cortex // J. Physiology. 1963. V. 165. P. 98–116.
  18. Savel'ev A.V. Modelirovanie sistem kletok Renshou // V sb. trudov VI Vseros. seminara «Modelirovanie neravnovesny'x sistem MNS-2003». 2003. S. 143–145.
  19. Du A. et al. A novel role for synaptic acetylcholinesterase as an apoptotic deoxyribonuclease //Cell Discovery. 2015. T. 1. P. 15002.
  20. Savel'ev A.V. Konczeptual'naya morfodinamicheskaya plastichnost' dendritny'x sinapsov v nejrokomp'yuterny'x modelyax // Materialy' XIII Vseros. seminara «Nejroinformatika i ee prilozheniya». Institut vy'chislitel'nogo modelirovaniya SO RAN. Krasnoyarsk. 2005. S. 95–98.
  21. Henderson Z. et al. Co-localization of PRiMA with acetylcholinesterase in cholinergic neurons of rat brain: an immunocytochemical study // Brain research. 2010. T. 1344. P. 34–42.
  22. Klaassens B.L. et al. Time related effects on functional brain connectivity after serotonergic and cholinergic neuromodulation // Human Brain Mapping. 2017. T. 38. № 1. S. 308–325.
  23. Gao J. et al. Roles of dopaminergic innervation of nucleus accumbens shell and dorsolateral caudate-putamen in cue-induced morphine seeking after prolonged abstinence and the underlying D1-and D2-like receptor mechanisms in rats // Journal of Psychopharmacology. 2013. T. 27. № 2. P. 181–191.
  24. Phillis J.W. The Pharmacology of Synapses: International Series of Monographs in Pure and Applied Biology: Zoology. Elsevier. 2013. T. 43.
  25. MacIntosh F.C. The role of vesicles in cholinergic systems //Synaptic Constituents in Health and Disease: Proceedings of the Third Meeting of the European Society for Neurochemistry, Bled, August 31st to September 5th. 1980. Elsevier. 2013. P. 11.
  26. Suryanarayanan A. Acetylcholine. 2014. DOI: 10.1016/b978-0-12-386454-3.00218-9
  27. Patent № 1645973 9 (RF). Ustrojstvo dlya modelirovaniya nejrona / A.V. Savel'ev, N. A. Savel'eva, A. A. Kolesnikov, A.G. Zhukov. 1991. BI № 16.
  28. Hutter O.F. A personal historic perspective on the role of chloride in skeletal and cardiac muscle // Physiological Reports. 2017. T. 5. № 6. P. e13165.
  29. Uchizono K. Excitation and inhibition: Synaptic morphology. Elsevier. 2013. 224 p.
  30. Ye Z. et al. mGluR1 enhances efferent inhibition of inner hair cells in the developing rat cochlea // The Journal of Physiology. 2017.
  31. Maruska K.P. et al. Localization of glutamatergic, GABAergic, and cholinergic neurons in the brain of the African cichlid fish, Astatotilapia burtoni // Journal of Comparative Neurology. 2017. T. 525. № 3. S. 610–638.
  32. Beierlein M. Synaptic mechanisms underlying cholinergic control of thalamic reticular nucleus neurons // The Journal of physiology. 2014. T. 592. № 19. S. 4137–4145.
  33. Patent № 1292494 (SU). Ustrojstvo dlya modelirovaniya nejrona / A.V. Savel'ev. 1987.
  34. Savel'ev A.V. Modelirovanie molekulyarnoj mnogoproczessornosti sinapticheskogo nejroe'kzoczitoza nejrona // Nejrokomp'yutery': razrabotka, primenenie. 2016. №2. S. 39–45.
  35. Hayashi T. et al. Inhibition and excitation due to gamma-aminobutyric acid in the central nervous system // Nature. 1958. T. 182. S. 1076–1077.
  36. Bazemore A.W., Elliott K.A. C., Florey E. Isolation of factor I //Journal of neurochemistry. 1957. T. 1. №. 4. S. 334-339.
  37. Fredette B.J., Mugnaini E. The GABAergic cerebello-olivary projection in the rat // Anatomy and embryology. 1991. T. 184. № 3. S. 225–243.
  38. Buisseret‐Delmas C. et al. Brainstem efferents from the interface between the nucleus medialis and the nucleus interpositus in the rat // Journal of Comparative Neurology. 1998. T. 402. № 2. S. 264–275.
  39. Curtis D.R., Hösli L., Johnston G.A.R. A pharmacological study of the depression of spinal neurones by glycine and related amino acids // Experimental Brain Research. 1968. T. 6. № 1. S. 1–18.
  40. McKernan R.M., Whiting P.J. Which GABA A-receptor subtypes really occur in the brain? // Trends in neurosciences. 1996. T. 19. № 4. S. 139–143.
  41. Hamann T. et al. The Arabidopsis BODENLOS gene encodes an auxin response protein inhibiting MONOPTEROS-mediated embryo patterning //Genes & development. 2002. T. 16. № 13. S. 1610–1615.
  42. Barakat L., Bordey A. GAT-1 and reversible GABA transport in Bergmann glia in slices // Journal of neurophysiology. 2002. T. 88. № 3. S. 1407–1419.
  43. Picciotto M. R. et al. Acetylcholine receptors containing the β2 subunit are involved in the reinforcing properties of nicotine // Nature. 1998. T. 391. № 6663. S. 173–177.
  44. Patent № 1329449 (SU). Ustrojstvo dlya modelirovaniya nejrona / T.A. Mezheczkaya, N.A. Savel'eva, A. V. Savel'ev, A.A. Kolesnikov. 1987.
Sept. 2, 2020
Aug. 27, 2020
June 24, 2020

© Издательство «РАДИОТЕХНИКА», 2004-2017            Тел.: (495) 625-9241                   Designed by [SWAP]Studio