Radiotekhnika
Publishing house Radiotekhnika

"Publishing house Radiotekhnika":
scientific and technical literature.
Books and journals of publishing houses: IPRZHR, RS-PRESS, SCIENCE-PRESS


Тел.: +7 (495) 625-9241

 

Estimation of perlite-class steel microstructure parameters using metallographic images

Keywords:

A.G. Tashlinskii – Dr. Sc. (Eng.), Professor, Head of Department «Radio Engineering», Ulyanovsk State Technical University
E-mail: tag@ulstu.ru
R.G. Magdeev – Engineer of Communication, OJSC «Ulyanovskneft»
E-mail: radiktkd2@yandex.ru


A method for automatization of finding the microstructural parameters of low-carbon steel from its metallographic images which makes it possible to determine a number of grains, their size and the size dispersion, the degree of ordering of orientations of the perlite grains, the vector of orientation, the ratio of perlite to ferrite phases and the degree of granularity of the pearlite is proposed.
The implementation of the technique can be divided into three main stages: preliminary processing of images under study aimed at increasing the accuracy and reliability of finding the microstructural parameters, segmentation on metallographic images of areas cor-responding to perlite grains according to which their microstructural parameters are further located, estimation on selected areas of microstructural parameters. Preliminary processing consists of color reduction of the image, the allocation information areas of the image, filtering the image to compensate for high-frequency distortions, brightness refinement compensating for uneven illumination of the microsection, and histogram equalization. Segmentation of perlite grains is achieved by the following procedures: segmentation, aimed at identifying areas of pearlite grains, mathematical morphology for eliminating internal discontinuities in grain images and excluding from the further analysis of small objects, isolating external boundaries and constructing convex shells of grains. Estimation of microstructural parameters of perlite grains includes the formation of adaptive templates for finding object parameters, Gaussian filtration of convex shells of isolated grains and formed templates to expanding the working range, stochastic gradient descent procedures used to estimate and calculation the microstructural parameters of grains.
The peculiarity of the technique is that the parameters of the templates are adaptive and adapt to the parameters of the spots represented by convex hulls. This allows you to automate the calculation of the microstructural parameters. Approbation of the technique on images of microsections of oil and water pipelines of different service life has shown that the found parameters and calculated according to the traditional methods of GOST 5639 differ by no more than 5%. The proposed technique can be used to determine the strength characteristics of the metal at various stages of production and operation: from quality control at the plant to determining the remaining resource.

References:
  1. Arzamasov B.V., Makarova V.I., Muxin G.G., Ry'zhov N.M., Silaeva V.I. Materialovedenie: Uchebnik dlya vuzov / Pod obshh red. B.N. Arzamasova, G.G. Muxina. M.: Izd-vo MGTU im. N.E'. Baumana. 2008. 648 s.
  2. Starodubov D.N. Metody' i algoritmy' obrabotki i analiza defektoskopicheskix i metallograficheskix snimkov. Dis. … kand. texn. nauk: 05.13.01. Vladimir. 2008. 183 s.
  3. Vinogradova L.A., Magdeev R.G., Kurganova Yu.V. Algoritm opredeleniya sootnosheniya form faz v perlite trubny'x stalej so strukturoj ferrit i perlit // RVM. 2012. № 6. S. 41−45.
  4. Vinogradov A.I., Trajno A.I., Sary'cheva I.A. K voprosu o transformaczii zernennoj struktury' metalla pri plasticheskom deformirovanii // Metally'. 2009. № 2. S. 54−60.
  5. Tret'yakov A.V., Trofimov G.K., Gur'yanova M.K. Mexanicheskie svojstva stalej i splavov pri plasticheskom deformirovanii. Karmanny'j spravochnik. M.: Mashinostroenie. 1971. 63 s.
  6. Vizil'ter Yu.V., Zheltov S.Yu., Bondarenko A.V., Osokov M.V., Morzhin A.V. Obrabotka i analiz izobrazhenij v zadachax mashinnogo zreniya: Kurs lekczij i prakticheskix zanyatij. M.: Fizmatkniga. 2010. 672 s.
  7. Baatz M., Schäpe A. Multiresolution Segmentation: an optimization approach for high quality multi-scale image segmentation // Journal of Photogrammetry and Remote Sensing. 2004. V. 58. № 3−4. P. 239−258.
  8. Magdeev R.G., Tashlinskij A.G. E'ffektivnost' identifikaczii ob''ektov na binarny'x izobrazheniyax s ispol'zovaniem proczedur psevdogradientnoj adaptaczii // Radiotexnika. 2014. № 7. S. 96−102.
  9. Magdeev R.G., Biktimirov L.Sh. Primenenie algoritmov postroeniya vy'pukloj obolochki pri analize izobrazhenij mikrostruktury' metalla // Izvestiya Samarskogo nauchnogo czentra Rossijskoj akademii nauk. 2014. T. 16. № 6(2). S. 496−500.
  10. Kormen T., Lejzerson Ch., Rivest R., Shtajn K. Algoritmy'. Postroenie i analiz. Izd. 3-e. M.: Vil'yams. 2013. 1324 s.
  11. Barber C.B., Dobkin D.P., Huhdanpaa H. The quickhull algorithm for convex hulls // ACM Transactions on Mathematical Software. 1996. V. 22(4). P. 469−483. DOI: 10.1145/235815.
  12. Tashlinskij A.G. Oczenivanie parametrov prostranstvenny'x deformaczij posledovatel'nostej izobrazhenij / Ul'yanovsk: UlGTU. 2000. 132 s.
  13. Tashlinskii A.G. Pseudogradient Estimation of Digital Images Interframe Geometrical Deformations / Vision Systems: Segmentation & Pattern Recognition. 2007. Vienna. Austria: I Tech Education and Publishing. P. 465−494. DOI: 10.5772/4975.
  14. Magdeev R.G., Tashlinskii A.G. A comparative analysis of the efficiency of the stochastic gradient approach to the identification of objects in binary images // Pattern recognition and image analysis. 2014. V. 24. № 4. P. 535−541. DOI: 10.1134/S1054661814040130.
June 24, 2020
May 29, 2020

© Издательство «РАДИОТЕХНИКА», 2004-2017            Тел.: (495) 625-9241                   Designed by [SWAP]Studio