Radiotekhnika
Publishing house Radiotekhnika

"Publishing house Radiotekhnika":
scientific and technical literature.
Books and journals of publishing houses: IPRZHR, RS-PRESS, SCIENCE-PRESS


Тел.: +7 (495) 625-9241

 

Rezonanse principles of the underwater SHF/EHF of the radio communication and radar-location

Keywords:

V.I. Petrosyan - Ph.D. (Phys.-Math.), Senior Research Scientist, Scientist, Scientific-Production Company “TELEMAK”, Saratov E-mail: voldemarakva@yandex.ru S.V. Vlaskin - Ph. D. (Phys.-Math.), Technic Director, Scientific-Production Company “TELEMAK”, Saratov E-mail: vl@telemak-saratov.ru, E-mail: s-vlaskin@yandex.ru S.A. Dubovitckiy - Ph. D. (Phys.-Math.), General Director, Scientific-Production Company “TELEMAK”, Saratov E-mail: sa@telemak-saratov.ru V.A. Lepilov - Ph. D. (Phys.-Math.), Associate Professor, Individual Entrepreneur, Saratov O.V. Vasin - Ph.D. (Phys.-Math.), Senior Research Scientist, Krasnodar Higher Misitary Shool named after General of Army S.M. Shtemenko, Krasnodar E-mail: ovassin@mail.ru A.A. Kulakov - Head, Krasnodar Higher Misitary Shool named after General of Army S.M. Shtemenko, Krasnodar E-mail: Andrei9614@rambler.ru Yu.S. Churikov - Head, Krasnodar Higher Misitary Shool named after General of Army S.M. Shtemenko, Krasnodar E-mail: Churikov888@yandex.ru


In modern underwater (underground) radio communications use radio waves in the mode radioparadise at low frequencies – VLF, SLF and ELF high megawatt power in the frequency band 3...30 kHz, 30...300 Hz, 3...30 Hz and lengths of radio waves 100 km...10 km, 10,000 km...1000 km and 100,000 km...10,000 km Hz SLF and ELF radio waves propagate in a waveguide channel Earth-ionosphere [1] and penetrate seawater to a depth of 350 metres (at a frequency of 100 Hz). For the transfer of such radio waves antenna, the fields must be transported thousands of kilometers in size. In the VLF range, for example, at a frequency of 30 kHz at a wavelength of 10 km with a reasonable size antenna penetration depth of radio waves in sea water reaches 20 meters. The need for bulky antennas creates problems with two sided capability. Also at low frequencies the transmission of information has a low informative capacity and speed of transfer ( telegraphic mode), low stealth and jamming security [2–4]. But a possible alternative – underwater radio communication with a "paradoxical" increase in the frequency of radio waves to SHF and EHF with the transition in DM and MM wavelength range at multiple reduced power density. Alternative possibilities for underwater radio communications occur in conditions of extremely low power densities of radio streams (less than 10 µW/cm square). This is due to the nonlinear effect in water [5, 6] when a power reduction of electromagnetic influence of the aquatic environment with non-linear radio linear absorption goes into adequate radio mode transparency (radio broadcast) [5–13]. With the transition to radio mode transparency open access use of the internal "information-wave" of the processes occurring in the aquatic environment. Electromagnetic "information-wave" research direction in the research of water-containing environments is based on the discovery of two fundamental phenomena of the Russian priorities: *The phenomenon of "information" (not energy) activity the absorption resonance of electromagnetic waves of an output not exceeding 10 mW/cm square EHF (MM) range [14–17] and *The phenomenon of a resonant electromagnetic wave resonance condition and the radio transparency of the molecular system of water in EHF (MM) and SHF (DM) ranges of radio waves in the extremely low-intensity less than 10 mW/square cm [5–13]. Both opening and further Radiophysics and biomedical research provides an objective basis to recognize the resonant wave nature of aquatic environments, as a real information-wave electromagnetic system. Resonant wave state of an aqueous environment is to surround resonant-vibrational state of the molecular oscillators of water and the formation of inner resonant electromagnetic (EM) fields on a selective, natural frequencies EHF and SHF ranges. In a resonant-wave as the water-containing environment "radio waves" low-intensity "resonant" EM waves. At the resonant frequencies the waves propagate, "broadcast" in the aquatic environment. Therefore, in contrast to the known resonance absorption – "absorption" resonances, these resonances are defined as "translational resonances", and the frequency and radio waves – as the " trans-resonance" [5–10]. Thus, the "source" entry of radio waves in three-dimensional interaction with the molecular system of water environment serve both low power density and trans-resonant frequency. This means that the resonant radio transparency of the water are coded with two keys. The spectra of resonant frequencies of radio transparency of the water is represented by two series of doublet – magnetic H and electric E Series belong to the self-oscillations molecular oscillators of water, which has magnetic and electric dipoles [11-13]: Н-series, GHz: 0.985, 1.0; 25.1(H), 25.9(H); 50.3, 51.8; 100.6, 103.6; 150.9, 155.4, E-series, GHz: 32.2(E), 32.7(E); 64.5, 65.5; 129, 131. Doublets 25.1(H), 25.9(H) and 32.2 (E) 32.7 (E) occur, respectively, only the magnetic (H) and electric (E) field. The doublet frequency, GHz 0,985, 1.0; 50.3, 51.8, and 64.5, 65.5 are fundamental and the basic natural frequencies of oscillations of the other harmonics. Due to the resonant wave of the relationship between the oscillators of the fractal-cluster molecular system of water environment is a universal transformation of the external trans-resonance EHF and SHF radio waves in the SHF radio waves of a resonant frequency of 1 GHz, emitted from the cluster I of the first order, known as SPE-effect [16]. The purpose of the experiment was to study basic possibilities for remote transmission of low-intensity EHF and SHF radio signals in fresh and sea water on the trans-resonance frequency of 1 GHz. As a result of experiments determined the spectra of marine and fresh water and shows their identity. Model experiments demonstrated the principal possibility of remote transmission of signals SHF, and EHF in marine and freshwater water and atmosphere. The transmission efficiency of signals in marine and fresh water are in the ratio 1:3. To assess the attenuation of radio waves in the experimental conditions (power density of radio wave of 1 mW/cm square, with the weakening at the reception – 10 dB was measured the levels of the intensities (I) of the broadcasted radio signals in the channels of the sea water 4 meter length I(4) = 65 V and 5 meters I(5) = 50 V. Definite relation I(4)/I(5) ≈ 0.77 attenuation of the radio signal has a relatively small value: k = 10∙lq(0.77) ≈ 10( 0.1) = 1 dB/m. Including reserve sensitivity (10 → 0) dB and the power (1 → 10) µW/cm square area EHF/SHF radio communication can be extended up to 100 meters, which is comparable with the range of VLF radio at a frequency of 30 kHz. The weakening of the maximum possible information of the radio signal to the background level defined as the ratio Imin/Imax ≈ 10-8. This corresponds to the attenuation 10∙lq(10-8) ≈ 80 dB. Taking into account the specific attenuation k = 1 dB/m the intensity of the background is comparable to the intensity of the information signal (with Imax = 10 µW/cm square) on the immersion depth in the range of 80 meters.
References:

 

  1. Bliokh P.V., Nikolaenko A.P., Filippov JU.F. Globalnye ehlektromagnitnye rezonansy v polosti Zemlja – ionosfera. Kiev: Naukova Dumka. 1977. 186 s.
  2. Sutjagin I. Sredstva svjazi atomnykh podvodnykh lodok tipa «Los-Andzheles» // Zarubezhnoe voennoe obozrenie. 1995. № 9. S. 52–57.
  3. Direktorov N.F., Doroshenko V.I., ZHitov JU.I. i dr. Avtomatizacija upravlenija i svjaz v VMF / Pod obshh. red. JU.M. Kononova. Izd. 2-e. SPb.: EHlmor. 2001. S. 301–302.
  4. Direktorov N.F., Sergeev V.V. Referat: O nauchnykh problemakh svjazi s podvodnymi lodkami. [Internet resurs]. http://www.ronl.ru/referaty/istoric-lichnosti (data obrashhenija: 02.03.2016).
  5. Petrosjan V.I., Guljaev JU.V., ZHiteneva EH.A., Elkin V.A., Sinicyn N.I. Vzaimodejjstvie fizicheskikh i biologicheskikh obektov s ehlektromagnitnym izlucheniem KVCH-diapazona // Radiotekhnika i ehlektronika. 1995.  T. 40. Vyp. 1. S. 127–134.
  6. Petrosjan V.I., Sinicyn N.I., Elkin V.A., Devjatkov N.D., Guljaev JU.V., Beckijj O.V., Lisenkova L.A., Gulja- ev A.I. Rol molekuljarno-volnovykh processov v prirode i ikh ispolzovanie dlja kontrolja i korrekcii sostojanija ehkologicheskikh sistem // Biomedicinskaja radioehlektronika. Pamjati M.B. Golanta. 2001. № 5–6. S. 62–129.
  7. Petrosjan V.I., Sinicyn N.I., Elkin V.A. Ljuminescentnaja traktovka «SPE-ehffekta» // Biomedicinskie tekhnologii i radioehlektronika. 2002. № 1. S. 28–38. 22.
  8. Petrosjan V.I. Rezonansnoe izluchenie vody v radiodiapazone // Pisma v ZHTF. 2005. T. 31. Vyp. 23. S. 29–33.
  9. Petrosyan V.I. Resonance Emission from Water // Technical Physics Letters. 2005. V. 31. № 12. R. 1007–1008. (Perepechatka).
  10. Petrosjan V.I. Informacionnye svojjstva vody // Millimetrovye volny v medicine i biologii: Sb. trudov  15 Rossijjskogo simpoz. s mezhdunar. uchast. «Millimetrovye volny v biologii i medicine». M.: 2009. S. 112–116.
  11. Petrosjan V.I., Sinicyn N.I., Elkin V. A., Majjborodin A.V., Tupikin V.D., Nadezhkin JU.M. Problemy kosvennogo i prjamogo nabljudenija rezonansnojj prozrachnosti vodnykh sred v millimetrovom diapazone // Biomedicinskaja radioehlektronika. 2000. № 1. S. 34–40.
  12. Petrosjan V.I., Majjborodin A.V., Dubovickijj S.A., Vlaskin S.V., Blagodarov A.V., Melnikov A.N. Rezonansnye svojjstva i struktura vody // Millimetrovye volny v biologii i medicine. 2005. № 1 (37). S. 18–31.
  13. Petrosjan V.I., Majjborodin A.V., Djagilev B.L., Rytik A.P., Vlaskin S.V., Dubovickijj S.A. Rezonansy vody v decimetrovom diapazone radiovoln // Biomedicinskie tekhnologii i radioehlektronika. 2006. № 12. S. 42–45.
  14. Devjatkov N.D., Golant M.B. Ob informacionnojj sushhnosti neteplovykh i nekotorykh ehnergeticheskikh vozdejjstvijj ehlektromagnitnykh kolebanijj na zhivojj organizm // Pisma v ZHTF. 1982. T. 8. Vyp. 1. S. 39–41.
  15. Devjatkov N.D., Golant M.B., Beckijj O.V. Millimetrovye volny i ikh rol v processakh zhiznedejatelnosti. M.: Radio i svjaz. 1991. 168 s.
  16. Beckijj O.V. Pionerskie raboty po millimetrovojj ehlektromagnitnojj biologii, vypolnennye v IREH RAN // Biomedicinskie tekhnologii i radioehlektronika. 2003. № 8. S. 11–20.
  17. Beckijj O.V., Kislov V.V., Lebedeva N.N. Millimetrovye volny i zhivye sistemy. M.: SAJJNS-PRESS. 2004. 272 s.

 

© Издательство «РАДИОТЕХНИКА», 2004-2017            Тел.: (495) 625-9241                   Designed by [SWAP]Studio