Radiotekhnika
Publishing house Radiotekhnika

"Publishing house Radiotekhnika":
scientific and technical literature.
Books and journals of publishing houses: IPRZHR, RS-PRESS, SCIENCE-PRESS


Тел.: +7 (495) 625-9241

 

Angle-of-Arrival integrity monitoring method optimization for real GNSS constellations

Keywords:

A.P. Melikhova – Part-programming Engineer, LLC «Special Technology Center» (Saint Petersburg) E-mail: antonina_92@list.ru I.A. Tsikin – Dr. Sc. (Eng.), Professor, Department «Radio Engineering and Telecommunication Systems», Peter The Great St.Petersburg Polytechnic University E-mail: tsikin@mail.spbstu.ru


Angle-of-Arrival integrity monitoring (IM) method is based on spatial signal processing and can effectively detect integrity failures caused by interference signal sources. Decision making (DM) algorithm about integrity presence or absence is constructed using likelihood ratio for measured and calculated directions to navigation signal sources. In accordance with Newman-Pearson strategy decision threshold must be preset depending on false alarm probability restrictions. Two different types of optimization procedures (OP) are analyzed in this work. The first one (OP Type 1) deals with the problem of decision threshold estimation during the statistical simulations of DM procedure for all possible (restricted by the value of dilution of precision) satellite constellations. The second optimization procedure (OP Type 2) assumes analyses for real satellite constellation geometries of specific GNSS observed from certain point of view. In both cases decision thresholds are estimated for vulnerable quantity of satellites. As a result, it was shown that OP Type 2 comparing to the OP Type 1 gives a significant missed detection probability decrease when the false alarm probability is restricted by some predetermine value. For example, in case when OP Type 2 is implemented for GLONASS constellation and false alarm probability is restricted by the value 10−5, missed detection probability gain comparing to OP Type 1 can reach as much as one order. Also it was estimated that the situation, when either the view point or GNSS type used during OP Type 2 and IM system maintenance differ, leads to significant loses in IM performance due to the false alarm probability increase. On the other hand, the optimization procedure of Type 1 never leads to such undesirable situations and provides suitable false alarm probability values for all possible view point and GNSS types. So it can be concluded that despite the missed detection probability loses in case, when view point or GNSS type are not predefined, the Type 1 optimization procedure is advantageous for decision threshold estimation. As a result, the article contains recommendations on the minimum received signals number for both OP types to provide suitable integrity monitoring performance when the system is implemented on compact drone antenna arrays with a small number of elements.
References:

 

  1. Closas P., Fernández-Prades C., Fernández-Rubio J.A. Maximum likelihood estimation of position in GNSS // Signal Processing Letters. 2007. IEEE 14. 359−362.
  2. Schmidt D., Radke K., Camtepe S., Foo E., Ren M. A Survey and Analysis of the GNSS Spoofing Threat and Countermeasures. Acm Computing Surveys 48. 2016.
  3. Azoulai L. Ion GNSS: Threats and Aviation, Mitigation Techniques, Alternatives and Regulation // Proceedings of the 24th International Technical Meeting of the Satellite Division of the Institute of Navigation (Ion GNSS 2011). P. 1897−1906.
  4. D S.: Global Navigation Satellite System (GNSS) spoofing // A review of growing risks and mitigation steps. 2013. V. 6. P. 42−61.
  5. Vegni C., Neri A., Inst N. GNSS Interference: Effects and Solutions // Proceedings of the Ion Pacific Pnt Meeting.  2015. P. 454−469.
  6. Cikin I.A, Melikhova A.P. EHffektivnost  pelengacionnogo metoda  kontrolja celostnosti navigacionnogo polja pri mnogokratnykh  nabljudenijakh // «Radiotekhnika», №9 za 2015 g, S. 69-77
  7. Milner C., Macabiau C., Thevenon P. Bayesian Inference of GNSS Failures // Journal of Navigation. 2016. V. 69. P. 277−294.
  8. Ahn J., Lee Y.J., Won D.H., Jun H.S., Yeom C., Sung S., Lee J.O. Orbit Ephemeris Failure Detection in a GNSS Regional Application // International Journal of Aeronautical and Space Sciences. 2015. V. 16. P. 89−101.
  9. Wang E.S., Yue X.D., Pang T., Zhang Z.X. Research on GPS Receiver Autonomous Integrity Monitoring Algorithm In the Occurrence of Two-satellite Faults // International Conference on Electronic, Information and Computer Engineering (ICEICE). 2016.
  10. Tsikin I.A., Melikhova A.P. Optimization of Angle-of-Arrival GPS Integrity Monitoring // Balandin S., Andreev S., Koucheryavy Y. (eds.) Internet of Things, Smart Spaces and Next Generation Networks and Systems. 2015. V. 9247. P. 722−728. Springer-Verlag Berlin.
  11. Khanafseh S., Roshan N., Langel S., Chan F.C., Joerger M., Pervan B. IEEE: GPS Spoofing Detection using RAIM with INS Coupling // IEEE/Ion Position, Location and Navigation Symposium. 2014. P. 1232−1239.
  12. Tao H.Q., Li H., Lu M.Q. A GNSS Anti-spoofing Method Based on the Cooperation of Multiple Techniques // Proceedings of China Satellite Navigation Conference (CSNC). 2015. V. I340. P. 205−215.
  13. Feng S.J., Wang S.H., Ochieng W., Inst N. A Core Constellation Based Multiple-GNSS Positioning and Integrity Monitoring Algorithm // Proceedings of the 27th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS). 2014. P. 307−314.
  14. Chen Y.H., Lo S., Akos D.M., Choi M., Blanch J., Walter T., Enge P. Development of a Real-time GNSS Software Receiver for Evaluating RAIM in Multi-constellation // ION Proceedings of the International Technical Meeting of the Institute of Navigation. 2014. P. 525−533.
  15. Dvorska J., Podivin L., Musil M., Zaviralova L., Kren M., Inst N. GBAS CAT II/III Business Aircraft Flight Trials and Validation - Phase 1 // Proceedings of the 27th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS). 2014. P. 822−834.
  16. Zhao L., Yang F.X., Li L., Ding J.C., Zhao Y.X. GBAS Ionospheric Anomaly Monitoring Based on a Two-Step Approach. Sensors 16. 2016.
  17. Tao H.Q., Li H., Zhang W.N., Lu M.Q., Inst N. A Recursive Receiver Autonomous Integrity Monitoring (Recursive-RAIM) Technique for GNSS Anti-Spoofing // Proceedings of the 2015 International Technical Meeting of the Institute of Navigation. 2015. P. 738−744.
  18. Ward N., Shaw G., Hill C. Detection, Location and Mitigation of GNSS Interference // ION Proceedings of the International Technical Meeting of the Institute of Navigation. 2014. P. 304−310.
  19. Daneshmand S., Jafarnia-Jahromi A., Broumandan A., Lachapelle G. A GNSS Structural Interference Mitigation Technique Using Antenna Array Processing // 8th IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM). 2014. P. 109−112.
  20. Antonina Melikhova, Igor Tsikin. Antenna Array With a Small Number of Elements for Angle-of-Arriving GNSS Integrity Monitoring // IEEE 39th International Conference on Telecommunications and Signal Processing (TSP). 2016. P. 190−193.
  21. Kaplan E., Hegarty C. Understanding GPS: principles and applications. Artech house. 2005.
  22. Melikhova A.P., Cikin I.A. Pelengacionnyjjmetodkontroljacelostnostipoljaglobalnykhnavigacionnykhsputnikovykhsistem// Nauchno-tekhnicheskie vedomostiSPbGPU. Ser. Informatika. Telekommunikacii. Upravlenie. 2015. № 1(212). S. 29 −38.
  23. Seok H., Yoon D., Lim C.S., Seo S., Park J.-P. Study on GNSS Constellation Combination to Improve the Current and Future Multi-GNSS Navigation Performance // Journal of Positioning, Navigation and Timing. 2015. V. 4. P. 43−55.
  24. Song J.C., Xue G.X., Kang Y.N. A Novel Method for Optimum Global Positioning System Satellite Selection Based on a Modified Genetic Algorithm. Plos One 11. 2016.
  25. Tsikin I., Melikhova A. Angle-of-Arrival GPS Integrity Monitoring Insensitive to Satellite Constellation Geometry // International Conference on Next Generation Wired/Wireless Networking. Springer International Publishing. 2016. S. 584−592.
  26. Chen C.S. Weighted Geometric Dilution of Precision Calculations with Matrix Multiplication // Sensors 15. 2015. P. 803−817.
  27. Helstrom C.W. Statistical Theory of Signal Detection: International Series of Monographs in Electronics and Instrumentation. Elsevier. 2013.
  28. Perov A.I., KHarisov V.N. GLONASS. Principypostroenijaifunkcionirovanija. M.: Radiotekhnika. 2005.

 

© Издательство «РАДИОТЕХНИКА», 2004-2017            Тел.: (495) 625-9241                   Designed by [SWAP]Studio